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ABSTRACT

Recent technological advances have facilitated the widespread use of wireless sensor

networks in many applications. Due to battery life concerns it is often of great

importance that the network configurations in use minimize energy consumption

while meeting some appropriate quality of service threshold. We develop a frame-

work for solving sensor placement problems that separates the solution procedure

from geometric or other concerns that may exist in specific problem instances. After

an implementation-specific pre-processing stage, coverage problems are reduced to

simple combinatorial optimization problems. Further, we develop two approaches

for determining solutions for the coverage connectivity problem: the first a cutting-

plane algorithm for single connectivity and the second a mixed integer semidefinite

formulation of the problem which allows for the solution of the coverage of the

coverage-connectivity problem for higher degrees of connectivity. Lastly, we do a

brief investigation into the prospect of network lifetime maximization using the fea-

sible solutions developed by these algorithms.
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CHAPTER 1

Introduction

1.1 Background: Wireless Sensor Networks

Often, it is desirable that we be able to establish and maintain a certain

level of awareness of the objects contained and events taking place in a region. In

some scenarios we would like to be notified if a previously identified resource or

object is moved or disabled, in other scenarios we would like to be notified of an

unexpected/unauthorized intrusion and in yet others we may have an interest in

reliably detecting an event.

For example it is of significant advantage that we detect forest fires as close

to their origin, in both the spatial and temporal contexts, as possible. The cost of

firefighting, the loss of valuable natural resources, and the threat to life and property

can combine to debilating effect. The potential contamination of a municipality’s

water supply serves as another example of an event which would ideally be identified

as early as possible. These are but two instances and other applications abound in

varied fields including biological detection, environmental monitoring, battlefield

surveillance [17], microclimate monitoring, the study of animal populations and

many others.

Recent and continuing technological advances have led to the development

of wireless sensor network technology to the extent that it can be and has been

employed to address the requirements of many of these situations. Some of the im-

portant advances facilitating this are in wireless communication and Micro Electrical

Mechanical Systems [19].

Wireless sensor networks are composed of numerous sensors and each of these

sensors, as the name implies, has the ability to notify or respond to events within

their field of sensing. In keeping with the varied nature of the problems the types of

devices that come under the umbrella term sensor are widely varied in their make-

up. To illustrate, sensing may be done via surveillance cameras, the reception of a

radio transmission, the use of infrared technology or by analyzing the contents of a

1
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chemical sample. Despite this diversity, it can be said that the acquisition of these

sensors is an increasingly low-cost venture.

The use of these sensors is convenient and comes with benefits: they can be left

unattended and therefore they can be used in environments that would be considered

dangerous or otherwise unappealing to human beings [51], and in other situations,

such as those in which insight into natural phenomena is being chased, they may be

prized for the ability to carry out the required surveillance unobtrusively [30, 41].

Whatever the specific means of gathering information, the sensor can, for many

purposes, be considered to consist of three modules: one that enables it to carry out

the sensing that it gains its name from, one that transmits gathered information

and one that serves as an energy supply.

It is this last module that ultimately makes the study of wireless sensor net-

works interesting. Even as the technology behind the sensing and communicating

serves to make rapid and ongoing upgrades in these capabilities, progress in the

area of increasing battery capacity is slow and by all indications will remain as such

for the foreseeable future [51]. This power scarcity is the driving concern behind

the quest for good sensor placement schemes. The continual replacement of these

batteries isn’t a very practical solution for the very reasons, already mentioned, that

we would wish to use wireless sensors in the first place. As such we need to take

great care in deciding how to utilize the sensors at our disposal.

The dual goals of any sensor network implementation would be that the net-

work be operational for a sufficiently long period of time and that the quality of

service it provides be up to an application-appropriate standard. While the respec-

tive weights placed on these considerations may vary from setting to setting they

are both important. A sensor network with great longevity is of little practical use

if it cannot reliably provide good information in any given time period. Similarly,

a sensor network that is only operational briefly has very little possibility of being

effective even if the quality of service in that brief period is stellar.

The most basic means of saving energy consists of turning sensors off or, in

some applications, reducing the power level in exchange for a reduction in function-

ality. In some applications it isn’t practical to turn sensors off and we have to resort
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to a sleep-state in which power is consumed at a drastically lower level. In most

cases, this sleep-state power level is a sufficiently small fraction of that of the active

sensor that, for modeling purposes, it is often reasonable to treat sleeping sensors

as being off.

1.1.1 Problem Requirements

1.1.1.1 Primary Concerns: Coverage and Connectivity

As mentioned before, a key component of the sensor’s functionality is the

ability to report on the things that it has detected. A sensor that didn’t wouldn’t

be useful. It turns out that the mode by which the sensor makes this information

accessible is a key determinant in the nature of the problems we have to solve. In

some situations all of the sensors can be assumed to have available to them some

inexpensive channel of communication with a central intelligence. Or perhaps, the

sensor might be bundled with another device and the information gathered is acted

upon at or near the sensor without having to be relayed elsewhere. In situations such

as these we are concerned only that we have an appropriate quality of coverage of the

region or targets. The problems that result are known as coverage problems. As has

been widely discussed, coverage problems are related to the Art Gallery Problem [15]

in which the objective is to use as few guards as possible to secure an art gallery.

In other situations, we may desire (possibly multi-hop) communication between

sensors as it may be important to keep sensors located elsewhere aware notified of

the current state, possibly for the purpose of being vigilant about possible future

events in their own vicinity. Alternatively, the sensors may use each other to relay

information gathered to a sink node at which higher levels of processing may take

place. In situations like these we are concerned not only that all the appropriate

targets are covered but that the sensors that are activated be able to communicate

with each other. The family of problems yielded by these and similar situations

are given the term coverage-connectivity problems. Coverage can be seen to be a

more primal concern than connectivity because every situation in which we desire

that sensors be connected has as its foundation a set of targets that necessarily have

to be covered. Problems involving connectivity increase the computational burden



4

notably.

1.1.1.2 Secondary Concern: Lifetime Maximization

In addition to the desire that the quality of service be up to an application-

appropriate standard there is the complementary objective that the network have

as prolonged a lifetime as possible. While the respective weights placed on these

considerations may vary from setting to setting they are both important. A sensor

network with great longevity is of little practical use if it cannot reliably provide

good information in any given time period. Similarly, a sensor network that is only

operational briefly has very little possibility of being effective even if the quality of

service in that brief period is stellar.

Whereas in the short term, energy-saving efforts may consist of finding con-

figurations that provide the appropriate level of service at minimum cost, when we

have the long term in mind the situation may dictate that we alternate between

different configurations, as a means of prolonging the lifetime of the network[6].

Another viewpoint that we can take when thinking about extending the life-

time of the network is that we should minimize the network’s susceptibility of the

individual sensors. Perhaps we should seek configurations that de-emphasize cost

minimization somewhat, placing some of the displaced emphasis on robustness. The

natural way to counteract the possibility that sensors can and will fail from time to

time is to require certain levels of redundancy. For example, it might be required

that each target be covered by more than one sensor. Or that there be more than

one path between any two sensors. When we require that at least k sensors cover

each target that is referred to as k-coverage. When we require that at least k paths

exist between two sensors this is known as k-connectivity.

Incidentally, in actual applications building redundancy into the network not

only improves the network’s fault-tolerance but the quality of service also. In prac-

tice sensors aren’t infallible and at best can only record events within their alleged

range with high probability[53]. Having multiple sensors covering a target serves to

increase this probability of detection.
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1.2 Prior Work

Previous work on coverage and coverage-connectivity problems can be parti-

tioned into centralized and distributed approaches. A distributed algorithm is one

in which the decision-making is done locally: the choice to activate any given sen-

sor hinges only on the behaviour of a set of sensors that have been defined to be

in the same locality as that sensor. In a centralized approach, all the information

available is utilized and decisions are made with their effect on the entire system

in mind. Centralized problem formulations allow us to clearly specify an overriding

objective but do come with a noticeable drawback: they don’t scale up very well

and consequently the quest to satisfy the specified objective is a difficult one.

Previous research reflects the wide variety of sensor types and applications and

in keeping with this it is the case that the sensor placement problems studied in

the literature show great variation. Some approaches work by isolating the worst-

covered regions of a given area while others place their focus on finding the areas

that are best-covered. In some situations the sensors are immovable and in others

they are highly mobile. In fact, in problems there is some sort of hybrid: maybe

the sensors can move once (or a finite) number of times after being deployed or in

other situations some of the sensors are mobile while others are not. All of these

variations serve as proxies for significant situations in the physical realm.

When it comes to connectivity the considerations can also vary subtly and the

relevant research follows suit. Some care only that a network is connected while

others concern themselves with the cost of transmission or the number of possible

routes that information transmission may take or how well the integrity of the data

is maintained over the course of transmission.

All of that being said, we endeavor to provide somewhat of a synopsis of the

literature.

1.2.1 Coverage Problems

As early as [17] three types of coverage behaviours have been identified for

sensor networks: blanket coverage, sweep coverage and barrier coverage. Barrier

coverage seeks a static configuration of nodes that maximizes the probability that
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intrusion through a barrier is identified correctly and recent recent work in the

area can be found in [11, 10, 32]. In sweep coverage the nodes are being moved

across the sensing area with the dual goals of maximizing the probability of event

detection while minimizing the possibility that events in any one particular area go

undetected. An example of sweep coverage can be found in [18] where the focus is

on the detection of landmines.

In blanket coverage the aim was defined to be a static arrangement of elements

that maximizes the detection rate of targets appearing within the coverage area.

This is where our focus will lie.

Even when confining ourselves to the study of blanket coverage there are var-

ied paradigms through which we can quantify the quality of service. Some charac-

terizations of coverage quality are predicated on determining which regions of the

sensing field are worst-covered while others focus on detecting the regions that are

best-covered.

As a preliminary to discussing different coverage algorithms it is worthwhile

to discuss the different sensing models that are in circulation. The most popular of

these is the disk model, in which it is assumed that the area that a sensor can cover

is isotropic and centered about the sensor’s own location. In two dimensions this

corresponds to a circle and in three to a sphere. The sensor has a specified coverage

radius and all elements within this threshold distance of the sensor are assumed to

be covered unless some externality is involved, perhaps an obstacle. In contrast, [31]

is an example of a work that allows for the possibility of arbitrarily shaped sensing

region. As noted above however, all target/event detection is probabilistic in nature

and when we speak of a target being covered we mean that the probability of a

noteworthy event being detected meets some application-specific standard.

In practice, this probability of sensing tends to deteriorate at a rate that

grows faster than the distance from the sensor [34]. The use of the disk model is

tantamount to setting a strict minimum requirement on the likelihood that a point

is detected by any given sensor. This approach ignores the fact that a target may

be covered poorly by any one sensor but still have a relatively high probability of

detection by a group.
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Approaches to the problem of coverage can be divided into two categories:

centralized and distributed. In centralized approaches, decisions are made with

knowledge of the entire network in mind with the goal of extremizing some objective

defined as a function of all the nodes. In distributed algorithms on the other hand,

decisions are made at each node regarding its own behaviour and the information

considered is restricted to that related to nearby nodes (and perhaps a fixed number

of other nodes).

Centralized approaches to solving coverage problems are by no means new,

with key early contributions in [35] and [8]. In [35] the coverage problem is analyzed

from deterministic, statistical, worst and best case perspectives and polynomial-time

algorithms are supplied that solve the coverage problem making use of such concepts

from computational geometry as Voronoi diagrams and Delaunay triangulations [38,

15]. It is to be noted that computing Voronoi diagrams and Delaunay triangulation

is not an easy task and cannot be taken for granted. In [8], the grid-based coverage

problem is formulated as an integer linear program. Like many other methods, the

assumption is made that sensors have isotropic sensing regions. Distances between

locations are input parameters of the integer program. Determination of whether or

not a target is in range of a given sensor is done via constraints added to the model

which utilize the values of these parameters.

Due to the computational issues that accompany centralized methods the

brunt of recent research of the coverage problem has been geared toward the develop-

ment of good distributed methods. [42] outlines a node-scheduling scheme that uses

a rules-based approach to determine when and for how long a sensor is asleep. This

is built upon by [25] in which the relationship between sleep schedules and the need

for redundancy in the network is explored in more depth. Using the insights gained

from both analysis and simulation, [25] is able to provide an improved scheduling

scheme that provides continuous coverage with noticeably less expenditure of energy.

More recently, some schemes have been developed to deal with the possibility

that some or all of the sensors in the network may possess the ability to relocate.

In some scenarios the cost of relocation may be relatively cheap, while in others

they might be nonnegligible. If the cost of moving a sensor is sufficiently low this
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situation might be treated as being equivalent to one in which we have free choice in

choosing the sensor location in the first place. [52] details three different algorithms,

VEC, VOR, and MiniMax, which are all distributed algorithms for mobile sensor

networks. These algorithms involve the use of Voronoi diagrams. In situations

where the cost of using the sensor cannot be reasonably ignored some, notably

[44], formulate protocols which allow for hybrid networks in which some sensors are

potentially mobile and others are not.

1.2.2 Problems involving connectivity

For blanket coverage of a contiguous domain, it has long been known that if the

communication radius of each sensor doubles the coverage radius then k-coverage

implies k-connectivity [45]. However, this assumption is not widely applied and as

such much work continues to be done toward the establishment of methods that

ensure both coverage and connectivity.

To discuss wireless sensor network problems with connectivity requirements we

should start by reviewing the different communication model, the most commonplace

of which is the binary-disk model. This model has its roots in the assumption that

a sensor’s field of communication, like its field of coverage, is isotropic. Two sensors

are considered to be in communication with each other if they lie within each other’s

communication field. That is to say that sensors can communicate if the distance

between them is bounded above by the smaller of their communication radii.

Just as with the coverage problem, distributed approaches predominate the

attempts to find solutions to the problem of having integrated coverage and con-

nectivity. Just as there are protocols that achieve coverage without any assurances

regarding connectivity, there are some that achieve connectivity without guarantee-

ing coverage [7, 49, 50, 12]. The SPAN algorithm formulated in [12] is then utilized

in [48] in conjunction with the coverage maintaining protocol CCP [48] to ensure

simultaneous coverage and connectivity.

[1] presents a pattern-based approach to sensor placement that guarantees

coverage and k-connectivity for k ≤ 4 that is appropriate for applications in which

we have full choice of sensor locations.
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Some methods, such as [28] utilize pattern-based deployment of sensors while

others such as [26, 33] specify protocols that employ sleep-scheduling and the ad-

justment of sensors’ power levels (and thus communication and coverage ranges) to

ensure simultaneous coverage and connectivity.

1.2.3 Lifetime Maximization

While early focus of sensor placement problems was on finding minimum en-

ergy configurations, increasing emphasis is being placed on maximizing the lifetime

of the network. Finding a single configuration that meets coverage and connectiv-

ity thresholds while minimizing total power consumption has been found to have

several notable flaws. First, it is sometimes the case that the configuration with

the minimum total power consumption is unbalanced in the sense that a few of the

sensors are using disproportionately large fractions of the total energy. The natural

consequence of this is that these sensors have their batteries depleted relatively early

in the network’s lifetime with debilitating effect on the rest of the network. Some

work is now focused on finding configurations that are more balanced in their levels

of power consumption. Other approaches aren’t satisfied with finding a single good,

or even very good, configuration. If a large number of acceptable configurations are

available perhaps the networks’s lifetime can be extended by alternating between

multiple of these configurations. If replacing multiple batteries isn’t significantly

more difficult than replacing a single one then it makes sense to deplete as many

sensors as possible before going in and renewing the batteries. Preliminary attempts

at prolonging network lifetime often involved finding as many disjoint configurations

as possible. However, it is often the case that alternating between configurations

that aren’t necessarily disjoint can have significant impact on prolonging the lifetime

of the network. Assuming that a large collection of feasible solutions is available

the lifetime maximization problem can be formulated as an linear program [6]. [24]

goes one step further and proposes the use of delayed column generation to possibly

unearth new feasible configurations that weren’t available at the start of the lifetime

maximization procedure.
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1.2.4 Other Similar Work

Integer programming approaches have also been taken to address similar prob-

lems in which network connectivity is an issue. In [23] a cutting plane method is

presented as a tool in designing survivable fiber optic communications networks. In

these problems it is of importance that for certain pairs of nodes in the network there

be a guaranteed path of communication even in the face of a reasonable amount of

network failure. [40] subsequently does a study of the multicommodity suvivable

network design problem and derives several valid and useful inequalities for the poly-

hedron of capacity design variables. [14] is a followup to [40] and presents a fully

fleshed out cutting plane algorithm for the solving the same problem. The general-

ized Steiner tree is a closely related problem in which each subset of the nodes in a

graph is assigned a value which serves as the lower bound on the number of edges

that must exist between that subset and its complement. With this constraint in

mind, the objective is to choose a minimum cost subgraph. [29] and [46] provide

approximation algorithms to solve this problem and a study of the nature of the

feasible polytope in [39]. Lifetime maximization is reminiscent of the task of packing

generalized Steiner trees. In this problem the goal is to find multiple generalized

Steiner trees which are vertex disjoint. [21] is the source of a good computational

approach and [22] investigates the polyhedral properties involved.

1.3 Linear and Integer Programming

Linear Optimization concerns itself with the optimization of a linear function of

one or more variables in cases where the set of allowable variable values is determined

by a group of linear constraints. A general linear program with n variables and m

constraints can be expressed as follows:

min c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn ≥ b1

...
...

am1x1 + am2x2 + · · · + amnxn ≥ bm

We can make the formulation more convenient and concise by imposing the



11

requirement that the x variables be nonnegative and letting:

x =


x1

x2

...

xn

 , c =


c1

c2

...

cn

 , b =


b1

b2

...

bm

 and A =


a11 a12 · · · a1n

...
...

. . .
...

am1 am2 · · · amn



This leads to a common formulation

min cT x

subject to Ax ≥ b (LP )

x ≥ 0

Associated with every LP is its dual problem. The dual of the standard-form

problem above has the form shown below where A, b and c retain their meaning

max bT y

subject to AT y ≤ c (LD)

y ≥ 0

For convenience, we will sometimes refer to the feasible regions of LP and LD as

X and Y respectively. It is known that for any x ∈ X and y ∈ Y , bT y ≤ cT x and

further that if each of LP and LD have a feasible solution then they have the same

optimal value. Feasible solutions that may not be optimal can still provide useful

bounds for the optimal solution to the primal problem.

(Linear) Discrete Optimization offers another wrinkle in that some of the vari-

ables can only be assigned values from a discrete set (often a set of integers). This

constraint is very realistic and often follows easily from the nature of the problem

being modeled: one wouldn’t assign 2.5 people to do a job or manufacture 0.4 pianos

for example.

With the introduction of an index set I representing the collection of indices

corresponding to x variables that are additionally restricted to be integer-valued we

get the following formulation of a mixed integer program:
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min cT x

subject to Ax ≥ b (MIP )

x ≥ 0

xi ∈ Z+,∀i ∈ I

1.3.1 Approaches to solving Integer Programming Problems

We deal with two approaches to solving discrete optimization problems: cutting-

plane methods and branch-and-bound methods. Nothing prevents these two meth-

ods from being hybridized and they can be used to complement each other. For a

more detailed treatment see [36, 47].

1.3.1.1 Cutting-plane methods

An essential concept in understanding cutting-plane algorithms is that of a

relaxation of a mathematical program. For a given MIP we can form relaxations

of the problem by doing at least one of the following: 1) expanding the feasible re-

gion to become a superset of the original or 2) using a new objective function which

is bounded above by the original objective function. Due to the fact that every

feasible solution of the original MIP is a feasible solution of the relaxation we can

say that the optimal value of any given relaxation is at least as small as the optimal

value of the original problem i.e. the optimal solutions to the relaxations provide

a lower bound on the optimal solution of the underlying MIP . One fundamental

approach to solving mixed-integer programs is to seek out relaxations of the ap-

propriate problem that simultaneously meet the following criteria 1) the relaxation

is easier to solve and 2) the solution of the relaxation will provide insight into the

solution of the MIP (in some cases, we can also reasonably hope that the relaxation

has its optimal solution at a point that is feasible for the original problem).

Due to the fact that integrality constraints provide large algorithmic obstacles

to the problem-solving process, a ubiquitous approach to forming relaxations is to

remove some or all of the requirements that decision variables be integer.

Cutting-plane methods are an iterative framework for solving Integer Program-
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ming problems in which after each solving of a relaxation we seek linear constraints

that are valid for the underlying IP that are violated by the solution of the current

relaxation. These constraints are added to form a new relaxation which is then

solved. The process is repeated until the solution of the current relaxation is a

member of the feasible region of the original MIP

Data: A, b, c, I

Result: x∗ = argmin{cT x : x ∈ X}
Let Xr ⊃ X;

Let xr = argmin{cT x : x ∈ Xr};
while xr /∈ X do

Find A∗, b∗ s.t. A∗x ≤ b∗∀x ∈ XandA∗xr > b∗;

Update Xr = Xr ∩ {x : A∗x ≤ b∗};
xr = argmin{cT x : x ∈ Xr};

end

x∗ = xr

Algorithm 1: Cutting-plane algorithm framework

1.3.1.2 Branch and Bound Methods

The idea behind branch and bound algorithms is to partition the feasible re-

gion of the MIP and solve easier problems over members of the partition. Explicitly

optimizing over each of the members of the partition is very intimidating computa-

tionally and doesn’t work very well as problem sizes get larger. However, it is often

possible to avoid much of this work.

The partitioning of the feasible region at any given point in the procedure is

known as branching, thus contributing to the name of the method as well as its

effectiveness. For a standard minimization problem, we seek a lower bound on the

optimal solution of any given branch and this can be found by solving a relaxation

of the problem at that branch. There are a few possible scenarios

• The lower bound found for the current branch has a higher value than that

of a feasible solution found previously. In this case we can be sure that the

optimal solution is not to be found in the current branch.
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• The relaxation yields a solution that is feasible for the integer program and

provides the smallest-valued optimal solution to the integer program found to

date. In this case, we have a candidate for the optimal solution

• The relaxation yields a lower bound that is not provided by a feasible solution

but is smaller in value than any of the objective values associated with feasible

solutions previously found. In this case, we make an effort to investigate this

branch further.

The solving at any given branch may make use of any solution technique

available to the implementer(s) and may even include branch and bound itself.

Implementation-specific features involve the method used to solve problems at dif-

ferent branches and making decisions regarding which branches should be given

priority at any given point in time.

1.4 Semidefinite Programming

Semidefinite Programming is a generalization of Linear Programming in which

some of the decision variables are not regarded as the components of a vector but

rather as the elements of a positive semidefinite matrix.

We can formulate a general form for primal and dual semidefinite program

that bear some resemblance to the general forms LP and LD established earlier.

min C •X

subject to Ai •X ≥ bi (SDP )

X � 0

max bT y

subject to
∑

i

yiAi � C (SDD)

y ≥ 0

Here U • V = trace(UT V ) =
∑
i,j

Ui,jVi,j and the notation U � 0 is used to

signify that U is positive semidefinite.
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These programs would both be linear were it not for the requirements that

X be positive semidefinite. In fact Linear programming can be recognized as a

special case of semidefinite programming in which the off-diagonal entries of X

are set to be zero. In such a scenario the semidefiniteness constraint is equivalent

to the nonnegativity requirement on the x variables in LP . In fact, it is only

the semidefiniteness constraint that distinguishes the general SDP from a linear

program. It is to be noted that this constraint allows for the off-diagonal entries of

the matrix X to be negative and we will take advantage of this later on. SDP is

convex and can be solved in polynomial time.

For a more complete review of Semidefinite Optimization see [43].

1.5 A Few Relevant Preliminaries from Graph Theory

An intuitive model for a connected wireless network is that of a graph and

some of our work to follow in subsequent chapters implements this approach and

capitalizes on prior results in the field of graph theory. As such, we now present

a very brief introduction to graph theory with particular emphasis on results and

terminology that happen to be germane.

Definition 1. A graph is a pair of disjoint sets (V, E) satisfying E ⊂ [V ]2, i.e. the

members of E are subsets of V of cardinality 2.

The standard method of visualizing graphs is via the use of dots and lines.

The members of V , (which are referred to as vertices, nodes and points), are usually

represented as dots. The members of E are represented as lines joining the relevant

members of V . In the graph pictured in figure 1.1 for example we would have the

following V and E

V = {1, 2, 3, 4} E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}

Definition 2. A path is a nonempty graph (V, E) of the form

V = {x0, x1, . . . xk} E = {x0x1, x1x2, . . . , xk−1xk}
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Figure 1.1: An example graph
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where all the xi are distinct.

Definition 3. Two points are said to be connected if there exists a path containing

both of these points.

Definition 4. A subgraph is said to be connected if any two of its members are

connected.

Definition 5. A connected subgraph that would lose its connectivity with the addition

of any other vertex is called a component.

Starting with the idea of connectivity, we can then tackle the question of quan-

tifying connectivity where it exists. Perhaps a component that possesses more than

a single path between any two points should be regarded as being better-connected.

Or maybe the connectivity of a component can be measured by how many edges or

vertices can be removed from the graph before it is no longer connected.

Definition 6. A vertex cut of a graph is a set of vertices whose removal renders the

graph disconnected.

Definition 7. A component is said to be k-connected if there exist k disjoint paths

between any two members of the component.

Definition 8. A graph is said to have a vertex connectivity κ if at least κ vertices

have to be removed from the graph for the graph to become disconnected.

[16] and [3] provide comprehensive introductions to graph theory.
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1.6 Tools

Much of the work is implemented in C and makes use of the ILOG CPLEX

callable libraries[27], a library that allows for the interaction with the CPLEX mixed-

integer programming solver. In our code, we generate a problem then utilize our

algorithm for solving the problem.

The callable libraries allow for the use of CPLEX as a black-box solver to solve

the intermediate relaxations of the problem.

Another third-party optimization package we work with is SDPLR[5] which

allows us to solve semidefinite programming problems via an implentation of the

algorithm presented in [4].

It is our goal to apply Linear and Integer Programming techniques to tackle as

many of these sensor placement problems as is feasible. Sensor placement problems

have long been formulated as optimization problems [8] however there is relatively

little attempt to increase the size of problems that can be solved when formulated

in this manner.



CHAPTER 2

Coverage Problems

As has been previously noted in the literature, the term coverage has been associated

with a wide variety of interpretations commensurate with variation in sensor models

and application. A workable conceptualization of the term is as a measure of how

much faith can be placed in the sensor network to accurately detect the events

taking place within the confines of the region being monitored. A sensor network

that is consistently accurate in its detection of relevant events can be considered to

be providing a high level of coverage.

Here we seek to tackle two of the three main types of coverage problems:

area coverage and discrete target coverage. The third major type of coverage is

boundary coverage. Area coverage, as the name might suggest, asks that the region

be monitored in its entirety. Discrete target coverage asks that we monitor a set

of discrete points that have already been selected as being of some importance:

possibly due to extra information indicating that interesting events are more likely

to happen at or near these locations.

The approach that we will take to the area coverage problem will actually be

to model the problem as a discrete target problem. The idea being that given a field

to cover we can pick a discrete set of points in the region as targets. The efficacy of

using this discrete set as a surrogate for the entire field is related to whether or not

the discrete points are sufficiently numerous and diffuse. If the maximum distance

between any point on the field to one of the target locations is relatively small then

we expect the solutions arrived at to be good solutions to the area coverage problem.

For example, figure 2.1 might correspond to an area that we desire to be

covered.

While there is no unique way to decide which points on the map we wish to

allocate this special target status, it seems reasonable and perhaps even natural to

utilize some kind of regular repeated pattern. The building blocks of these patterns

can conceivably be of any shape but we will rely on rectangular grids. We lay a grid

18
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Figure 2.1: A possible region to be covered

down over the area to be covered and consider all the grid points that coincide with

points within the region to be the targets. A finer mesh would represent a more

accurate representation of the problem while adding to the computational burden

associated with solving the problem.

The previously illustrated map might look as in figure 2.2 after we have des-

ignated targets according to some grid-based pattern.

The diagrams that follow show a region and how it might alternatively be rep-

resented by a grid-based target selection scheme or another target selection scheme.

It is conceivable that the seemingly random deployment might be the result of a

design decision made by implementers with extra knowledge of the situation or it

might actually random. The discrete target coverage problem would probably also

feature a map in which the targets seem to be distributed in such a manner.

Figure 2.3 demonstrates how the targets might be dispersed if the target-

designation process was not pattern-based.

Good coverage of a region facilitates not only the monitoring of important

events but the potential tracking of moving targets. The better covered a region

minimizes the probability that a target that is moving through a field can remain

undetected and even potentially allows for path reconstruction if detection events

are time-stamped.
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Figure 2.2: Using grid-based targets to model the region

2.0.1 Formulation of the Coverage Problem

A key feature of our approach and the one that allows us to separate the main

portions of our algorithms from the realm of geometry is a pre-processing stage in

which we collect lists of sensors that cover each target. This pre-processing is of great

benefit to us as the constraints generated in the intermediate stages of our algorithms

(both for this problem and the coverage-connectivity problem) are heavily dependent

on having this information accessible and as such it is advantageous to only have to

do those particular computations only once.

The fact that we don’t have any interaction with geometric concerns after this

pre-processing stage makes this approach very flexible. To the extent that they

possess similar numbers of sensors and targets, problems based in three-dimensional

contexts aren’t more difficult than their two-dimensional counterparts; we are well

equipped to deal with obstacles and other irregularities that would seem to otherwise

undermine the effectiveness of our traditional models of sensing regions; the window

is left open to deal with various types of sensing regions.

We formally define coverage as appropriate for the rest of this work.
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Figure 2.3: Using randomly chosen targets to model the region

Definition 9. Let t be a target location in the sensing field and s be a sensor. s is

said to cover t if s can reliably be expected to detect the events taking place at t.

Definition 10. Let t be a target location in the sensing field and S be a set of

sensors. S is said to cover t if at least one member of S covers t.

Definition 11. Let t be a target location in the sensing field. t is said to be k-covered

if k or more sensors cover t.

For ease of notation, we define essential problem parameters as follows:

Parameter Definition

ns number of possible sensor locations

nt number of targets

m number of sensors required for each target

t number of sensor types available

RS(i) radius of sensitivity of sensor type i

RT (i) radius of transmission of sensor type i

R(i) radius of operation of sensor type i when RS(i) = RT (i)

R radius of operation when all sensors are identical

Using xi to denote an indicator variable of whether or not sensor i is activated,

we shall give names to the sets of sensors that can possibly cover each target

cov(i) = {x : target i is covered by sensor x}
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As for constraints, what we need now is that sufficiently many members of

cov(i) be activated for each target i. Exactly how many of these are needed follows

directly from the degree of coverage desired. By the definition of k-coverage we

arrive at constraints for the coverage problem

∑
i∈cov(i)

xi ≥ k

The appropriate objective function would now seek to minimize the total cost

of activating sensors and that leaves us with the following integer linear program

for the coverage problem. Using ci to denote the cost of using sensor i, we have the

following formualation of the coverage problem.

min cT x

subject to
∑

i∈cov(i) xi ≥ k (COV )

xi ∈ Z+

This is not the first time that the coverage problem has been formulated as

an integer linear program and an earlier formulation can be found in [8]. In fact,

covering problems such as these are standard in integer programming particularly

when k = 1 [36]. Examples of algorithms for more general values of k can be found

in [2, 9].

In [8], the model is based on an isotropic model of the sensing regions and

the distances between locations are included in the formulation so as to bundle

the functionality of the two phases of our approach into one phase. On the same

problems solved in that earlier work our formulation provides no advantage. We

anticipate that there are benefits to be reaped from our approach via the eventual

extension to the coverage-connectivity problem and an enhanced ability to deal with

non-isotropic sensing regions.

2.0.2 Types of coverage problem

All of the problems that we are attempting to solve are of the discrete target

variety: either a problem that was originally of this form or an area coverage problem



23

that we are modeling as a discrete target problem. We can classify the problems we

solve by the manner in which the the sensors and targets are distributed.

The most basic of the problems solved is that of a grid in which every grid

point is a target as well as a potential sensor location. We will solve these problems

for square regions as well as regions that are more elongated in one direction or the

other. This situation models an area coverage problem. From a sensing point of

view this scenario reflects a situation in which either all the points in the region

are candidate sensor locations (if the grid mesh is sufficiently fine) or a situation in

which sensors have already been laid out according to some regular pattern.

The first modification of this most basic problem would be to randomly discard

some percentage of the points generated in an attempt to develop a somewhat

more realistic map. At the least this results in a region that isn’t symmetrically or

regularly shaped. We can then go even further and remove some of the locations

in an attempt to model an area coverage problem in which there are unsuitable

locations.

We can also use grid-based targets in randomly distributed sensor locations to

reflect situations in which we desire area coverage but significant control over the

placement of sensors for example the previously mentioned use of aircraft for the

purpose of sensor deployment.

2.1 Dealing with heterogeneity among sensors

In many cases there may be some variety in the sensors at our disposal. Some-

times different types are available or equivalently (for our purposes) individual sen-

sors can be operated in a variety of modes. The cost of a sensor is typically a

monotonically increasing function of its coverage ability but the particular rate of

increase may vary. We deal with heterogeneous sensors in a manner used in [8]

which is to split variables and to treat one sensor’s potential to operate at different

levels as different sensors.

We use cu,v to denote the cost of using sensor u at level v and xu,v to denote the

corresponding decision variable. In order to prevent a configuration which features

one sensor being operated in multiple modes the following constraints are employed
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∑
j

xi,j ≤ 1 ∀i

Lemma 1. For single coverage no additional constraints are required to deal with

heterogeneous sensors.

Proof. Assuming that the optimal solution asks for the same sensor to operate at

more than one power level we can reduce the objective value by de-activating the

lower powered version without violating the coverage requirements for any target.

Thus, we have a contradiction.

2.1.1 Results of Problems with Heterogeneous Sensors

Figures 2.4 and 2.5 demonstrate the results of simple grid-based problems

involving two types of sensors. The sensor parameters used were taken from [8]. As

is noted in [8] sensors that minimize cost per target covered tend to predominate

while the other type of sensor that is cheaper tends to be used for the purpose of

filling in gaps in the configuration.

2.2 Unique Coverage

An interesting variation of the coverage problem is one in which the desired

sensor network not only covers the targets cheaply but that each target is covered

by a unique set of sensors. Some devices that fit under the umbrella description of

‘sensor’ are restricted in their functionality in that they can only report whether or

not they have detected an event. If each target location is covered by a unique set of

sensors we can determine the location of the event, a piece of information that one

sensor alone would be able to provide, by examining the list of sensors that reported

the event. Unique coverage provides a means for us means for us to perform data

fusion [8].
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Type a:

Type b:

e
u Range: 100, Cost: 150

Range: 200, Cost:200

Figure 2.4: Coverage of a 10x10 grid with 2 types of sensors
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2.2.1 A cutting-plane algorithm for Unique Coverage

Our approach to solving the unique coverage problem is predicated on the

assumption that a sensor can’t choose to ignore a location that its field of perception.

With this in mind, for any two targets i and j they cannot both be covered only by

sensors in the intersection of the two sets cov(i) and cov(j).

Thus the unique coverage problem can be stated as

min cT x

subject to
∑

i∈cov(i) xi ≥ k (UCOV )∑
i∈cov(k)\cov(j)∪cov(j)\cov(k)

xi ≥ 1 ∀j, k such that cov(j) ∩ cov(k) 6= ∅

xi ∈ Z+
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Type a:

Type b:

e
u Range: 100, Cost: 150

Range: 200, Cost:200

Figure 2.5: 2-Coverage of a 10x10 grid with 2 types of sensors
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Many of the constraints may be unnecessary so we solve the problem via

a cutting-plane method. Initially, we solve the coverage problem. We then look

for constraints that may be violated in the interim solution and add them to the

model and solve again. After each solving we test for feasibility and in response to

finding multiple sensors covered by the same set of sensors we add the appropriate

constraints. At each iteration a tighter relaxation of the problem is solved and

eventually a minimum cost unique coverage configuration is arrived at. The size of

the problems that can be conveniently dealt with would be a function of problem

sizes, computing resources and the urgency with which results are needed.

Figures 2.6 and 2.7 give two examples of grid-based unique coverage problems

solved via the cutting plane method described above.
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Figure 2.6: Unique Coverage of a 6x6 grid, m=1
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Figure 2.7: Unique Coverage of a 6x6 grid, m=2
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CHAPTER 3

A cutting-plane approach to the coverage-connectivity

problem.

Now, we move on to tackle the additional problem of connectivity: that there be a

path facilitating communication between any pair of sensors that are chosen to be

on. If we consider each sensor chosen to be on as a vertex and the possibility of

communication between two sensors to be an edge this requirement can be equiv-

alently stated as a need to have the graph induced by the set of active sensors be

connected.

We employ a cutting-plane method to solve this problem: we solve relaxations

of the problem; at each stage testing for connectivity and if necessary adding con-

straints that would be valid for any connected solution but are violated by the

solution of the current relaxation.

Through inspection of the intermediate solutions it is possible to find sets

of edges, all of which are currently inactive, for which we can say that at least

one member of the set has to be available in a feasible solution to the coverage-

connectivity problem.

3.0.2 Connectivity with m=1

The initial relaxation of our algorithm is none other than the coverage problem

formulated previously which had as its objective

n∑
i=1

cixi

and was constrained as follows:

∑
i∈cov(k)

xi ≥ m , k = 1, 2, . . . , nt

As before we model the possibility of operating a given sensor at varying

28
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levels of energy consumption by splitting variables. Sensor i operating at power

level p is represented by variable xi,p and to prevent the possibility of the algorithm

choosing to run the sensor at two different levels simultaneously, we use the following

constraint:

∑
p

xi,p ≤ 1 , k = 1, 2, . . . , nt

Upon solving this problem, we can determine how many components are extant

therein. We can now start to seek violated constraints. We do so by focusing on

each of the targets in turn. Due to the coverage requirement we can guarantee that,

at any given iteration of the algorithm, any given target t is covered by one or more

components. If the number of components is greater than 1 then we seek valid

constraints that are violated by the current solution to add.

To aid in the formulation of these constraints we introduce the variable yi,j to

represent an edge between sensors i and j and N(i) to denote the set of sensors with

which sensor i can communicate. If the sensors are not capable of communicating

with each other then yi,j is always zero-valued and can be excluded from the model.

If sensors i and j are capable of communicating with each other, then having both

be on automatically causes the edge to exist and yi,j takes a value of 1. If the

sensors are capable of communication but one or both of them is not activated then

yi,j takes a value of 0.

Where appropriate, yi,j can be seen to be the product of xi and xj.

yi,j = xixj

As is discussed in [37], we can avoid the use of this quadratic constraint by

using the facet-defining inequalities that follow that describe the convex hull of

triples (yi,j, xi, xj) that adhere to it.

yij ≤ xi (3.1)

yij ≤ xj (3.2)
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xi + xj − 1 ≤ yij (3.3)

We are now better equipped to add constraints that involve the inclusion of

edges.

For the formulation of specific constraints that are valid for any feasible solu-

tion to the coverage− connectivity problem that may be violated by the solutions

found by the intermediate stages of our cutting plane algorithm we inspect the tar-

gets to be covered as well as the components that exist in the intermediate solutions.

Let C+(i) denote the union of all components covering target i, we can further

define a set C∗(i) as follows

C∗(i) = C+(i) ∪ cov(i)

For any given target, i, exactly one of the following conditions will hold C∗

does not cover all the targets C∗(i) covers all the targets

Figure 3.1 illustrates both of these cases. The sensors colored red and blue

are on with each color being assigned to a single connected component. Target T1

is covered by two components which between them cover all the targets i.e. C∗(T1)

covers all targets. On the other hand, targets T2 and T3 are each covered by one

component each, neither or which covers all of the targets. The brown-colored

sensors are currently turned off i.e. C∗(T2) and C∗(T3) both fail to cover all the

targets.

In each of these cases, we can generate violated constraints.

3.0.2.1 First type of constraint

If C∗(i) does not cover all of the targets then we have some valuable infor-

mation. First, we know that a member of C∗(i) must be activated to meet the

coverage requirement as C∗(i) is a superset of cov(i). Second, we know that at least

one sensor that isn’t a member of C∗(i) has to be activated as there is a target that

C∗(i) doesn’t cover. Connectivity necessitates that there be a path between these

two sensors and thus there be at least one edge from C∗(i) to its complement. Hence

the constraint of the form (3.4).
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Figure 3.1: Configuration that meets coverage requirement but fails to
meet connectivity. The red sensors are all activated and form
a component. The blue sensors are also activated; forming a
connected component of their own.
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∑
(i,j)∈δ(C∗)

yi,j ≥ 1, where δ(C∗) = {(i, j) : i ∈ C∗, j /∈ C∗} (3.4)

3.0.2.2 Second Type of Constraint

In the situation in which C∗(i) does cover every target, we can also generate

valid cutting-planes which exclude the current solution. We know that in the optimal

O a target, t, is covered by a single component: O itself.

The conclusion can then be drawn that at least one sensor that isn’t currently

activated needs to be activated. One possibility is that this sensor that would be

activated in the optimal solution has the power to cover all targets (and is thus a

member of C∗(i)). In this case, such a sensor would nullify the need for any other
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sensors to be activated as a single sensor would constitute a connected configuration.

On the other hand, the sensor may conceivably lie outside of C∗(i) and need to form

an edge with a member of C∗(i). A third possibility is that this sensor is a member

of C∗(i) that isn’t capable of covering all the targets and consequently needs to form

an edge that isn’t currently in existence, either within C∗(i) or not.

Using Ω to represent the set of sensors that can possibly cover all targets, we

have the constraint (3.5).

∑
j∈Ω

xj +
∑

(j,k)∈δ(C∗(i)),j /∈Ω

yj,k +
∑

j∈(C∗(i)\C+(i))∩Ω̄, k∈N(j)∩C∗(i)

yj,k ≥ 1 (3.5)

3.0.3 The Algorithm Specified

Data: c, cov(i)∀i ∈ 1, . . . , nt, n, m

Result: S =

set of sensors that satisfy coverage and connectivity requirements

Solve Coverage Problem;

Let w =# of components in solution

while w 6= 1 do

foreach t, a target do
Determine the appropriate type of constraint to add;

Add the constraint to the model

end

Solve new problem;

Update w =#of components in new solution;

end

Algorithm 2: Cutting-plane LP to establish connectivity

Now, we provide a proof that cuts of the types formulated above are sufficient

to find the minimum-cost solution to the coverage-connectivity problem. It is to be

noted that the cuts that we generate do not exclude any feasible solutions. Now we

wish to show if all such solutions are added the optimal solution of the problem we

have codified is indeed a feasible solution to the coverage-connectivity problem.
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Theorem 1. The cuts of the two types outlined in (3.4) and (3.5) are sufficient for

the convergence of the algorithm

Proof. Let O be a feasible solution, if O has any connected components that don’t

cover any targets it is suboptimal for the coverage-connectivity problem, as long as

sensor costs are strictly postive, as we can remove these components for a reduction

in objective value.

Assume that O is indeed optimal and features 2 or more connected compo-

nents. There are two cases:

1) ∃ i such that C∗(i) does not cover all the targets

2) Every target is covered by a collection of components that cover all the

targets.

Case 1: We know that at least one member of C∗(i) has to be active in order

for the coverage requirement to be met. Also a member of its complement must be

activated because there is a target that cannot be covered by C∗(i). There must

be a connected path between these two sensors necessitating at least one edge from

C∗(i) to its complement and we can add a constraint of the form 3.4.

Case 2: We can consider any target t. The union of the components covering

t is disconnected and covers all targets. Unless the problem is infeasible there must

be at least one sensor left to turn on which is either powerful enough to cover all

the targets or would have to form an edge with a member of C∗(t). Thus we can

add a constraint of the form 3.5.

3.0.4 Results involving uniform sensors

3.0.4.1 A Note on Determining Feasibility

While utilizing problems that are randomly generated there is always the possi-

bility that the problem instance is infeasible. We found this to be the case especially

when smaller numbers of sensors were involved and this is not counterintuitive by

any means. In order to detect feasibility we found the number of components that

would be formed if all the sensors were used simultaneously. For the problem to be

feasible we then need that at least one of the components covers all the targets.
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In order to investigate how likely problems were to be infeasible we randomly

generated problems on a square or side 500. The number of sensors was varied

from 50 to 80, in increments of 10, and the number of targets was varied from 10

to 40, also in increments of 10. Four different values for the radius of the sensors

were utilized: 100, 150, 160 and 175. All sensor and target locations were generated

using a uniform distribution. Tables

Table 3.1: Infeasibility Rates for randomly generated problems with ra-
dius 100

% Infeasible Problems for Radius 100
No. of Sensors

No. of Targets 50 60 70 80
10 47.3 24.2 10.9 4.7
20 61.0 34.4 18.1 7.6
30 68.7 43.1 22.4 9.9
40 71.9 47.6 26.3 11.5

It can be seen that adding more sensors to increases the probability of the

problem being feasible while increasing the number of targets has the reverse effect.

When the radius was increased to 160 the problems with 50 sensors and 40 targets

were infeasible 0.5% of the time and all other combinations of parameters were

infeasible even less frequently. When the radius was further increased to 175 only

a single problem instance across all combinations of parameters was found to be

infeasible. This problem occurred, not surprisingly, with 50 sensors and 40 targets.

In the case of area coverage problems being approximated by discrete targets

Table 3.2: Infeasibility Rates for randomly generated problems with ra-
dius 150

% Infeasible Problems for Radius 150
No. of Sensors

No. of Targets 50 60 70 80
10 0.5 0.7 0.4 0
20 1.4 1.0 0.6 0
30 2.3 1.4 0.7 0
40 2.6 1.6 0.8 0.02
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Table 3.3: Mean solution values randomly generated problems with ra-
dius 150

Mean Solution Values
No. of Sensors

No. of Targets 60 70 80
10 5.27 4.92 5.13
20 7 6.55 5.6
30 6.5 6.2 5.5
40 6.84 7 7

these rates of infeasibility would seem to provide a useful measure of how well we are

approximating the region. For any given radius the infeasibility rates tend to plateau

as more targets are added. Since the number of targets is a crucial factor in the

computational difficulty of the problem it is useful to use these values to determine

how few targets we can use while maintaining a certain threshold feasibility rate.

3.0.5 Solution values and Convergence of the Algorithm

.

We solved several instances of connectivity problem on a square region of

length and width 500. In the experiments we varied the number of randomly de-

ployed sensors from 60 to 80 and required that they cover a number of targets that

varied from 10 to 40, increasing in increments of 10. Each sensor had a coverage

and communication radius of 150. We solved 15 instances of each type of problem.

Following are the mean solution values for the different problem instances.

In general, the problems with lower target numbers have lower cost optimal

solutions. Perhaps, in conjunction with the previous observation that increases in

target numbers provide diminishing marginal returns regarding the quality of area

coverage, this can be useful in practical contexts. Larger numbers of sensors provide

lower optimal solutions but as we shall see below they correspond to more extended

run-times. Further analysis of the trade-off between computational difficulty and

solution cost may also prove to be useful.

At each iteration we add a number of constraints equal to the number of
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Table 3.4: Mean No. of iterations for randomly generated problems with
radius 150

Mean No. of Iterations
No. of Sensors

No. of Targets 60 70 80
10 5.2 3.2 5.4
20 10.8 10.8 10.23
30 10 9.4 14.67
40 16.33 11.6 17.5

targets. For most of the problems the number of iterations prior to convergence is

relatively small and the optimal solution is often the first or second feasible solution

found. For problems with 70 sensors and 40 targets or 80 sensors the number of

iterations blows up.

3.0.6 Sample Problems

Figures 3.2 and 3.3 illustrate the results of using the previously described

algorithm to deploy sensors that are spaced 1 unit apart in both the horizontal and

vertical dimensions with ranges of 1.5 units.

Also, we have some examples of the solutions to randomly generated problems.

As stated before, in these randomly generated problems we used a square of side 500

units to serve as the region. The number of sensors was varied from 60 to 80 and a

radius of 150 was used for both coverage and connectivity. These particular values

were used as they represent some of the more substantial problems solved in [6]. In

[6] the radii was varied from 100 to 300 and the number of sensors from 50 to 100.

For values for the radius greater than 150 the problems were solved even more easily

and for values near the lower end of the range it was difficult to generate feasible

problems with reliability especially for problems involving less than 60 sensors.

3.0.7 The Cost of using a particular sensor

As noted in [33], two common metrics used for evaluating the cost of operating

a sensor at a certain power level are to make the cost of operation proportional to

the operating radius or the area of coverage/communication. When the set of values
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Figure 3.2: Connected graph for a 7x7 grid-based problem, Radius: 1.5
units
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that the sensors range can be set to form a continuum the modeling approach is to

discretize these values, for example if the operating radius can be made to be as high

as 60 meters we might consider 6 different operating levels: 10, 20, 30, 40, 50 and

60 meters. Sometimes it is possible to use the same number of sensors even when

reducing the power of each sensor. Figure 3.7 illustrates a map in which 40 sensors

and 30 targets have been placed according to a uniform random distribution. Figure

3.8 illustrates that the optimal number of sensors doesn’t increase if the operating

radius is reduced from 150 to 125. For a cost metric in which the cost of using a

sensor grows linearly with the sensor’s area of service a sensor with operating radius

of 150 represents a 44% increase in power over one that has a radius of 125. If the

cost grows at greater than quadratic rate then the energy savings will be even more

drastic.

3.0.7.1 Computational Considerations

Via experimentation it has been found that a cost metric in which the sensor

cost is equal or proportional to the area being covered isn’t ordinarily as conducive
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Figure 3.3: Connected graph for a 8x8 grid-based problem, Radius: 1.5
units
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to fast convergence as a metric in which the cost is equal or proportional to the

radius. This is by no means counterintuitive as quadratic growth in costs exerts

extra pressure on sensors to communicate only with those in close proximity.

Left to its own devices a method seeking only the fulfillment of coverage re-

quirements will tend to emphasize the use of sensors that provide most coverage per

unit cost while marginalizing other types of sensors to roles filling gaps. When the

cost of a sensor increases as a linear function of the radius, it is actually increasing

at a rate that is less than linear when considered as a function of the area being

covered. If there is a notable positive correlation between the area of a subregion

and the number of sensors contained therein, there is consequently an impetus to

use sensors with large ranges which in turn makes it so that components tend to

cover more area and thus more components. When the costs grow steeply relative to

changes in coverage, the intermediate stages of the algorithm tend to yield numerous

small components

Fortunately, we can take advantage of the fact that the cuts we generate are

always valid for any feasible connected solution regardless of which costs are used to
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bring them about. We have found that solving the problem with linearly increasing

costs and then changing the objective function, whilst using all of the previously

generated constraints, gives a useful head start. In fact, in practice we actually

increase the growth rate of the costs gradually and it seems possible that we could

even investigate the use of costs that are monotonically increasing and subadditive

as functions of the radius.
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Figure 3.4: 70 Sensors, 40 Targets, Radius: 150
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Figure 3.5: 80 Sensors, 10 Targets, Radius: 100
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Figure 3.6: 60 Sensors, 40 Targets, Radius: 150
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Figure 3.7: 40 Sensors, 30 Targets, Radii: 125 and 150
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Figure 3.8: 40 Sensors, 30 Targets
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Figure 3.9: 40 Sensors, 30 Targets, Radii: 125 and 150
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CHAPTER 4

A Semidefinite Programming Approach for Coverage and

k-connectivity

4.1 Background Information

Associated with any graph is a matrix known as its Laplacian. The properties

of the Laplacian relay much salient information regarding the connectivity of the

graph. It is our intent to make use of these Laplacians to tackle the problem of

satisfying coverage requirements while establishing k-connectivity.

Prior to the introduction of the Laplacian we introduce the adjency and degree

matrices of a graph. The degree matrix of a graph, D, is a diagonal matrix in

which each entry corresponds to the degree of the corresponding vertex. As for

the adjacency matrix of a graph, the i, j entry corresponds to the number of edges

between vertices i and j. Take for example the graph in figure 4.1.

It has the following degree and adjacency matrices:

D =



1 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 1 0

0 0 0 0 1


and

A =



0 1 0 0 0

1 0 1 1 0

0 1 0 0 1

0 1 0 0 0

0 0 1 0 0


The Laplacian matrix is defined as the difference of the degree and adjacency ma-

46
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Figure 4.1: An example of a graph
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trices.

In our particular example, the Laplacian is:

1 −1 0 0 0

−1 3 −1 −1 0

0 −1 2 0 −1

0 −1 0 1 0

0 0 −1 0 1


The Laplacian matrix for any given graph is diagonally dominant with positive

entries on the leading diagonal and is thus positive semidefinite. Also by definition

the sum of each row or column is zero. This means that the linear transformation

represented by the Laplacian maps e, the vector of ones, to the zero vector of the

same dimension and that eT Le = 0 indicating that e is necessarily in the eigenspace
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of the eigenvalue 0.

The information that is most relevant to us relates to a characteristic of the

second-smallest eigenvalue that is stated succinctly below.

Theorem 2. The second-smallest eigenvalue of the Laplacian matrix is known as

the algebraic connectivity and provides a lower bound for the vertex connectivity of

the graph [20].

In fact, the geometric multiplicity of 0 eigenvalue is equivalent to the number

of connected components in the graph and as such we know that for a connected

graph the algebraic connectivity must be strictly positive.

More detailed coverage of the properties of the Laplacian matrix can be found

in [13] and [20].

4.2 A semidefinite programming approach

The gist of our approach is to model our problem as a graph, in which vertices

represent sensors and adjacencies imply the ability to communicate, and subse-

quently to find an induced subgraph with the minimum number of nodes that man-

ages to meet constraints implied by our coverage and connectivity requirements.

The formulation of constraints that secure an adequate level of coverage is

relatively simple: the constraints are linear and their derivation is straightforward.

On the other hand, the constraints that ensure connectivity involve semidefinite

variables and their formulation is noticeably more involved.

Using m to denote the number of sensors we wish to have available to cover

each target, we first formulate constraints to ensure that our coverage requirements

are met

∑
i∈cov(j)

xi ≥ m , j = 1, 2, . . . , nt (4.1)

We note that we can generalize on this problem and have each target have its own

required level of coverage.
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To tackle the problem of ensuring a certain level of connectivity we turn to

the Laplacian. In order to guarantee k-connectedness we need to ensure that λ2 ≥
k − 1. A Laplacian matrix, L, that meets this criterion is accurately characterized

as follows:

dT Ld > (k − 1)||d||, ∀d such that vT
1 d = 0 where Lv1 = 0 and ||v1|| > 0

In order to avoid the use of a strict inequality, we introduce a constant γ, which is

of the following form

γ = (k − 1) + ε

where ε is a small constant to be determined at the time of implementation and we

now have the following non-strict inequality

dT Ld ≥ γ||d||,∀d such that vT
1 d = 0 where Lv1 = 0 and ||v1|| > 0

Now, as before, we use x to denote the vector of decision variables corresponding

to sensors and y to denote the edges between sensors. Both x and y are 0-1 vectors

with xi = 1 if and only if sensor i is deployed and yij = 1 if and only if both sensors

i and j are deployed and they are capable of communicating with each other.

We use I to denote a subset of the set of possible indices for x and xI to rep-

resent the configuration in which sensor i is deployed if and only if i ∈ I. Similarly

we use LI to represent the Laplacian of the subgraph induced by xI . Our job is

to sift the set of all possible sensor combinations and come away with the I that

minimizes cost subject to our constraints.

In order to ensure that we have a valid Laplacian matrix we need to have

certain constraints in place

LI
ii =

∑
j∈N(i)

yi,j,∀i ∈ I (4.2)

yij = yji (4.3)
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Here we are making the assumption that communication between sensors is sym-

metric. This lines up well with the standard assumption made when using the disk

model that two sensors can communicate with each other if and only if the distance

between them is less than or equal to the minimum of their communication radii.

A preliminary requirement for k-connectivity is that each sensor chosen to be

on must have k neighbours chosen to be on

LI
ii ≥ k,∀i ∈ I (4.4)

In order to ensure the k-connectivity of the induced subgraph we need LI to satisfy

dT LId > (k − 1)||d||,∀d such that vT d = 0 where LIv = 0 and ||v|| > 0

We know that the eigenvector corresponding to λ1(L
I) = 0 is the vector of

ones and it follows that the eigenvector corresponding to λ1(L
∗) = 0 is a vector, v∗

where

v∗i =

 0 i /∈ I
1 i ∈ I

We can consider a matrix,

X = L∗ + cW − γI

where,

L∗ =

 LI 0

0 kI


W =

 eeT 0

0 0


(The block of ones in the upper left corner of W is of the same size as LI .)

and

c is a positive constant
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.

Due to the block-diagonal structure of X, its eigenvalues (and eigenvectors)

correspond to those of each of the blocks.

The addition of cW to L∗ has the effect of shifting the minimum eigenvalue of

the upper left block, i.e. I, from zero to a positive constant that is a function of c.

None of the other eigenvalues is affected by this first addition. The subtraction of

γI from cW + L∗ causes all the eigenvalues to then be shifted γ in the direction of

−∞.

Since, k is larger than γ, it is easy to see that,

λ2(L
∗) ≥ γ ⇔ λ2(L

I) ≥ γ

So, if c is chosen to be sufficiently large, we can say that

X � 0 ⇔ λ2(L
I) ≥ γ

and thus the task of ensuring the appropriate level of connectivity can be reduced to

ensuring that X is positive semidefinite. If I has already met the coverage criterion,

then it is a feasible solution to the coverage-connectivity problem. What would

remain would be the determination of which choice of I minimizes the appropriate

objective function.

So, in order to formulate the problem as an SDP, we’ll need some constraints

to enforce X fitting the prescribed form.

First, we’ll introduce the matrix W defined as follows

wij = xixj (4.5)

with the elements of W effectively serving as an indicator of whether or not both

i and j are in I and thus whether or not the corresponding elements of L∗ are

subjected to the extra shift. Due to the 0-1 nature of the entries in x we can

use linear equations to represent the conjunction whilst avoiding the computational

difficulties that would come along with quadratic constraints
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wij ≤ xi (4.6)

wij ≤ xi (4.7)

xi + xj − 1 ≤ wij (4.8)

wij ≥ 0 (4.9)

We use W first in the formulation of a constraint concerning the structure of L∗ and

subsequently in generating an expression for L∗ in terms of X.

−kxi + (k − L∗
ii +

∑
j∈N(i)

wi,j) = 0, ∀i (4.10)

Examining (4.6) and (4.7), we can see that setting any particular xi to be zero has

the effect of forcing any associated w variables to also be zero which in turn would

imply that L∗
ii has to equal to k for the equality in (4.10) to hold. Setting xi to one

would mean that any associated w variables linked to xi and any of its neighbours

that are simultaneously set to one are thus forced to one themselves. Again, L∗
ii is

then forced to act appropriately in order for the constraint (4.10) to hold.

Recall that,

L∗ = X − cW + γI (4.11)

Substituting (4.11) in (4.10) we get

−kxi + (k −Xii + cwii − γ +
∑

j∈N(i)

wij) = 0, ∀i (4.12)

Now, wii = xi and by definition k − γ = 1− ε, so we are left with

(c− k)xi −Xii +
∑

j∈N(i)

wij = ε− 1, ∀i (4.13)

We are also in need of constraints that restrict the off-diagonal entries of X. If
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sensors i and j are in range of each other, then an edge exists if both are turned on

i.e.

(X − cW + γI)ij = −wij (4.14)

and simplifying

Xij = (c− 1)wij if i ∈ N(j) (4.15)

In the case that sensors i and j don’t lie in each other’s communication radii, no

edge exists between them and the value Xij is determined solely by whether or not

both sensors are chosen to be on. Explicitly

Xij = cwij if i /∈ N(j) (4.16)

In both scenarios, Xij is merely a scaling of wij and plugging these into (4.12), (4.6),

(4.7), and (4.8) we have a compact formulation of the problem as an SDP

min eT x

(c− k)xi −Xii + 1
c−1

∑
j∈N(i)

Xij = ε− 1, ∀i

tXij ≤ xi

tXij ≤ xj

xi + xj − 1 ≤ tXij

Xij ≥ 0

X � 0

x ∈ {0, 1}n

where t =

 1
c

i /∈ N(j)

1
c−1

i ∈ N(j)

It is to be noted that this formulation is indifferent to factors such as the shape of

the sensing region and the layout of the potential sensor locations. If the sensing and

communication radii of any given sensor are the same then a single matrix suffices
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as input; if a disparity exists then two matrices are adequate. Further, if there are

no asymmetries in sensing, then we only need to store the upper triangle of each

input matrix.

4.3 Computational Considerations

The problem formulated above is an SDP with the additional constraint that

the elements of x are integer and those of X be chosen from a discrete set. Presently,

there is no available software for solving problems with both of these characteris-

tics. It is our approach to implement a branch and bound algorithm to solve these

problems.

A given node of our branch and bound tree represents a relaxation of the orig-

inal problem as well as a constriction of the relaxations represented by its ancestor

nodes.

Due to the 0-1 nature of the variables we can branch after solving a relaxation

by choosing a subset of the x components currently assigned fractional values and

fixing them to be integer henceforth. We can get an upper bound on the best feasible

solution to be found in any of the descendant nodes of the present relaxation by

simply taking a count of the nonzero entries in the current x; a lower bound can be

had even more easily by taking the optimal value of the current relaxation.

The set of all nodes at a given depth of the tree has the property that every

feasible solution to the problem is a feasible solution for exactly one member of the

set. Thus, even if solving the problem to completion is beyond our computational

means, we can conceivably get good upper and lower bounds for the solution by

examining the solutions to all the nodes of a certain depth: the smallest of the

upper bounds serves as a valid upper bound on the optimal solution and a lower

bound can be found similarly by taking the minimum of the lower bounds.

The value of ε chosen may also prove to be very important. The larger the

value of ε the smaller the pool of feasible solutions. In fact, making ε too large may

very result in an unnecessarily infeasible problem.
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4.3.1 Obtaining feasible solutions at each node

Due to the computational complexity of the problems, that comes with bundling

integrality constraints with semidefinite programming it may not be practical to ac-

tually solve these problems to optimality. However, it is possible that we generate

a collection of good feasible solutions and in many applications this is superior to

having a single optimal solution on hand.

At any given node of the branch and bound tree the optimal solution is more

likely than not to be fractional in nature i.e. several of the x variables which act as

indicator variables for the sensors may have values that lie in the interval (0,1). It is

tempting to simply round these fractional values up to the nearest integer but first

we should investigate whether or not this is guaranteed to give a feasible solution

to the original problem.

Recalling (4.8), we can see that if the sum of two fractional variables, xi and

xj, is less than 1 there is a possibility that the associated wi,j variable to remain

will remain at its zero lower bound.

We can consider the example of a variable xi that has a value of a ∈ (0, 1) in the

fractional configuration returned as the optimal solution to one of the relaxations.

If none of the w variables are associated with a sensor have positive values then

that sensor is not being considered as part of I for the purpose of calculating the

connectivity of the configuration. Instead it is associated with the diagonal block of

L∗, the block corresponding to sensors that are not chosen to be on. In particular

we know that

L∗
i,i = (1− a)k

in order for constraint (4.10) to be satisfied. If (1 − a)k ≥ γ then this L∗ satisfies

all the feasibility requirements but it does so by considering the contributions of

sensor i toward fulfilling the coverage requirement while ignoring the effects that its

presence would have on the connectivity of the graph.

Thus, when presented with any given fractional solution we need to deal with

fractional values of the x variables very carefully. Ideally, we would fix some subset

of the fractional variables and this would lead to integer solutions upon re-solving.

We have yet to implement a branch and bound algorithm fully but for some
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problems with sufficiently large radii relative to the size of the map we can find

feasible solutions relatively easily. Figure 4.2 for example depicts a 400x400 map

in which 60 sensors and 10 targets have been distributed. Each sensor is assumed

to have an operating radius of 150. The coverage requirement is that each target

be covered by at least 2 sensors. The connectivity requirement is that the chosen

network configuration be a 2-connected graph. The feasible solution shown was

obtained via our branch and bound method in its current form.
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Figure 4.2: 60 Sensor Locations are available to choose from and there are
10 targets to be covered. The chosen network of 12 sensors
can withstand the failure of any given node. Each sensor
operates with a radius of 150
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CHAPTER 5

Extending Network Lifetime

5.1 Background Information

The most referenced drawback to using centralized approaches to sensor place-

ment problems is that the effort and/or time required to arrive at the optimal so-

lution are exorbitant. It is our belief that this is mitigated by the fact that most

optimization algorithms unearth multiple feasible solutions before coming across the

optimal solution. In fact, in many cases the long run-times are associated not with

discovering the optimal solution but rather with obtaining a certificate of optimality:

it is not just important to find the best solution but also to verify that it is indeed

a good solution. With that in mind, the questions then arise: how useful are the

intermediate feasible solutions generated by our optimization methods? Perhaps,

it is possible that the configurations that we come upon prior to optimality can be

considered to be good in some appropriate metric. Or maybe, for some scenarios,

having several good solutions may trump having a single optimal solution. One such

scenario in which this might be the case is one in which the objective is to maximize

the lifetime of the network. Other than the previously discussed measure of possibly

turning down the power of sensors where appropriate the most common means of

prolonging the lifetime of the network is to alternate between valid configurations

for as long as possible. In such a situation, it would be of benefit to have a collec-

tion of feasible solutions as opposed to a single solution. As such, we tailor all our

algorithms to record all the feasible solutions that may be encountered during the

solving process. For negligible extra effort we possibly gain a means of prolonging

network lifetime.

It is easy enough to see that if two or more disjoint sets of sensors could be

found, each meeting both coverage and connectivity requirements, they could be

turned on in succession to prolong the lifetime of the network. Finding such disjoint

sets is the most venerable approach to solving lifetime maximization problems. How-

ever, it is also possible to alternate between configurations that aren’t necessarily
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disjoint to achieve a gain in network lifetime.

For example consider a scenario in which we have 5 identical sensors, A, B,

C, D, and E, available to be used and it has been previously determined that 3

legitimate combinations meet the coverage/connectivity requirements at hand and

are specified as follows

C1 = {A, B, C}
C2 = {C, D,E}
C3 = {E, A, B}

If we let l denote the lifetime of the sensors, it can be seen that using any of

these configurations for period l completely exhausts the sensors involved in that

particular configuration while preventing the use of any of the other valid config-

urations. On the other hand, using each of the configurations for a period l
2

and

alternating between them allows for the lifetime of the network to be extended to

3l
2
. As is illustrated in this example the relevant constraints for tackling a problem

such as this is that each individual sensor has a certain battery capacity (and a

commensurate lifetime) that it cannot be reasonably requested to exceed.

Given a collection of feasible configurations it is straightforward to select a

subset of these, and a specification of how long a period of time each should be em-

ployed for, that maximizes the lifetime of the network. What is key is the generation

of the set of configurations: all else being equal, we would like that the quantity and

quality of the solution pool be both relatively large.

5.2 Formulating the Problem

Given a list of N configurations, we can begin to formulate the problem. As

an objective, we’d like to maximize the sum of the lengths of times we can use each

configuration for. Using ti to denote the time period we wish to use configuration

i, the formalized objective is

N∑
i=1

ti

Now we need constraints to ensure that no one sensor is asked to use more
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energy than allowed by its battery’s capacity. We will use a and p parameters to

represent the battery capacity and power levels associated with specific sensors.

These variables will be valued as multiples of some standard capacity for energy

and operating power respectively. The p variables are doubly indexed with pi,j

representing the rate at which sensor i uses energy in configuration j. If all sensors

are of the same type, we can set a to one. If all the sensors operate with the same

fixed radius, it is then the case that the p variables are all zero-one valued: zero if

sensor i is not used at all in configuration j and one if it used at the standard power

level. We then have the following linear programming formulation for the problem:

max eT t

subject to
∑N

j=1 pi,jtj ≤ ai, ∀i (LM)

t ≥ 0

This is a straightforward linear program and thus solving even very large

instances should not be excessively onerous computationally.

5.2.1 Results

As a measure of lifetime elongation we use the ratio of the network’s lifetime to

that of a single sensor operating at what we consider to be its default power level. In

situations in which one (or more) sensors features in every utilized configuration we

have no increase in network lifetime and a magnification factor of 1. The following

data gives the lifetime magnification factors for the problems solved in Chapter 3

using just the set of feasible solutions generated by the algorithm developed therein.

These results don’t appear to be particularly impressive seeing that the optimal

solutions use a very small percentage of the sensors available. Even though the

sensors that feature in an optimal solution hardly constitute a random sample it

seems intuitive that the probability of the problem remaining feasible once these

sensors have been removed should be favourable. Such an occurrence would indicate

the existence of disjoint solutions and at least the doubling of network lifetime. Thus
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Table 5.1: This table shows the mean number of solutions generated by
the algorithm developed in Chapter 3 prior to its termination

Mean Number of Solutions
No. of Sensors

No. of Targets 60 70 80
10 28.07 32.25 13.75
20 51.57 52.27 19.2
30 41.5 26.4 28
40 9.62 60.55 89.83

Table 5.2: This table shows the mean lifetime maximization results using
solutions generated by the cutting-place algorithm in Chapter
3.

Mean Lifetime Magnification
No. of Sensors

No. of Targets 60 70 80
10 1.56 1.39 1.38
20 1.63 1.59 1.2
30 1.44 1.2 1.16
40 1.38 1.68 1.47

we are led to believe that there is significant overlap between the feasible solutions

generated by the cutting plane algorithm prior to termination. Inspection of the

data corroborates this.

This leaves open the possibility of a delayed column generation approach to

unearth further feasible solutions that share little if any sensors with the optimal

solution found.

5.3 Lifetime Maximization with Mobility

In some applications sensors can potentially change location during the life-

time of the network. The extent of to which they can move about is a defining

characteristic of the associated lifetime maximization problems. In some situations

all of the sensors are capable of moving an indefinite number of times. Scenarios

that meet this description are referred to as featuring total mobility. In other situ-

ations each sensor can move only once upon being deployed. These situations are

given the moniker partial mobility. In yet other problem types the sensors available
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for use are of different types: some are stationary while others are mobile. Networks

meeting this criterion are called hybrid networks. We will restrict ourselves to the

first two of these three network types.

5.3.1 Lifetime Maximization with Partial Mobility

The Problem of Lifetime Maximization with partial mobility allows us to move

each sensor at most once before it is used. This is equivalent to a situation in which

we have available to us a fixed number of sensors and a list of candidate locations

at which we can place the sensors. The problem can be reduced to choosing how

many sensors, if any, to allocate to each possible location. We formulate an integer

program that represents this problem.

We will express the problem in a form similar and analogous to that of LM

above. With the stationary sensor network we were constrained by the fact that

no sensor could use more energy than its capacity dictated. With the partial mo-

bility problem we are constrained by the fact that the quantity of energy spent at

a particular location is limited by the number of sensors that we deploy to that

location. If we let S denote the number of sensors available, we have the following

mixed integer linear program which represents the lifetime maximization problem

for partial mobility networks.

max eT t

subject to
∑N

j=1 pi,jtj ≤ niai, ∀i (LMPM)∑
i ni = S

t ≥ 0

ni ∈ Z

5.3.1.1 Results

For cases involving uniorm sensors this algorithm almost always returns the

floor of the quotient of the number of sensors and the cardinality of the optimal

solution i.e. the algorithm chooses to repeat the optimal solution as often as possi-

ble. Table 5.3 shows the mean lifetime magnification values obtained for different

problems. Each of the problems featured sensors and targets placed on a square of
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Table 5.3: Lifetime Magnification Results employing Partial Mobility

Mean Lifetime Magnification
No. of Sensors

No. of Targets 60 70 80
10 11.33 14.75 14.63
20 8.43 10.73 14.4
30 9.07 11.2 12.2
40 9.61 9.82 11.17

side 500 according to a uniform random distribution. The operating radius of each

sensor is 150. Further work on heterogeneous sensors can be undertaken if a similar

phenomenon is in effect in those situations.

5.3.2 Future Work

The seemingly low lifetime maximization values for problems without mobility

might possibly be improved upon in the future with the use of a delayed column

generation approach. If the lifetime maximization attained through the approach is

deemed to be inadequate we can try to find new configurations that prolong network

lifetime that meet the appropriate feasibility requirements.

Using P to denote the constraint matrix of LM the dual problem to LM is

min aT y

subject to P T y ≥ e (LMD)

y ≥ 0

If ȳ is the optimal solution of the problem LMD and we were to find a vector p̄

such that ȳT p̄ has a value strictly less than 1 then the configuration corresponding to

p̄ would lead to an increase in network lifetime if p̄ was added as an additional column

to the constraint matrix in LM . We would need to verify that p̄ actually represented

a feasible solution to the problem at hand. That leaves us with the subproblem of

minimizing the function θ = ȳT p subject to the appropriate feasibility constraints.

An objective value less than 1 signifies the ability to prolong the network’s lifetime.

Depending on the situation we might already have all the relevant feasibility

constraints available. If the pool of configurations was found using the cutting-plane
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algorithm developed earlier it may be the case that the new lifetime prolonging

configuration isn’t actually feasible as it may violate a constraint of the form (3.4)

or (3.5) that has yet to be added to the model. If the configuration is feasible we

can add it as a column to LM ; if it is not we can add the appropriate constraints

to the feasibility problem.



CHAPTER 6

Future Work

Thus far we have come up with cleaner IP formulations of several different types of

sensor placement problems. These formulations are still prone to the usual difficul-

ties associated with integer programming. It is intended that we will continue to

explore means of increasing the problem sizes that we are able to solve in reasonable

time. Much of this work will be done in the algorithmic aspect of the problem-

solving process: there seems to be significant room for improving the algorithms in

use. The following areas in particular seem to be promising

• Further investigation of how best to represent an area by discrete targets. The

marginal utility of using discrete targets tends to plateau after a certain num-

ber of targets have been employed. Investigation of the relationship between

the radii of coverage and the number of targets needed to represent the area

adequately may well prove to be fruitful as the number of targets being covered

is a significant factor in the tractability of a problem.

• Development of a fully functional mixed integer semidefinite programming

solver. At present the sizes of the problems we can get good solutions for are

not of much practical value.

• A rigorous investigation of how our methods hold up in situations in which

the disk model is not obeyed. In many situations the disk model is not very

realistic. The modularity of our approach would seem to make it well suited

to be tried with a wider variety of network topologies.

• Investigation of how all of your algorithms perform in situations in which

sensors and targets are not uniformly distributed or grid-based.

• Improving separation routines for the unique coverage problem. At present

we simply add all the violated cuts that we can find at any given iteration.

Many of these may be redundant and thus unnecessary. Also we intend to

65



66

investigate the possibility of dropping cuts that havent been active for a series

of iterations. Presently, the biggest factor slowing down the runtime of the

algorithm is the sheer number of constraints that are in play when the problems

are being sent to the solver.

• Use of delayed column generation methods for solving problems involving life-

time maximization. At present there tends to be a lot of commonality among

the feasible solutions that our algorithms during their time of execution. This

is not ideal for the purpose of lifetime maximization. The constraints of the

various types we have formulated however seem to be well suited to be used as

the constraints of the subproblems in a delayed column generation approach

to lifetime maximization.
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