Quantum Mechanics  

(Spring 2007, 4 credits, M, Th, 8.00-9.50am)

Syllabus:

 

Section 1: Spin

         Particle intrinsic spin

         “Motionless” spin particle

         Spin particle in motion: spinors

         Rotational operator

         Spin dynamics

 

Section 2a: Spin addition

         Two interacting spins

         Addition of two spin ½ angular momenta

         Dynamics of spin interactions

 

Section 2b: Angular momentum addition-general

         Number of degeneracies

         Coupled representations

         Clebsch-Gordon coefficients

         Wigner-Eckart Theorems

 

Section 3a: Approximation: variation method

         Variational principles

         Born-Oppenheimer approx

         Non-central fields

         Periodic potential

         WKB approximation

 

Section 3b: Approximation: perturbation

         Stationary perturbation

         Perturbative expansion

         Degenerate perturbation

         Examples

 

Section 3c: Fine and hyperfine structures

         Non-relativistic expansion

         Spin-orbit interaction

         Darwin term

         Zeeman effects

         Proton-electron spin interaction

         Selection rules

         Contact term

         Positronium

 

Section 4: Time dependent perturbation

         Transition probability

         Fermi-Golden rules

         Resonance interaction

         Atom in EM radiation

         Dipole and quadruple interaction

         Adiabatic processes

         Aharonov-Bohm Effect

 

Section 5a: Quantum scattering I (Born approx.)

         Cross section

         Stationary state solutions

         Green function

         Scattering amplitude

         The Born approximation

         Applications

 

Section 5b: Quantum scattering II (Partial waves)

         Angular momentum free space solutions

         Plane waves in terms of angular momentum

         Partial waves in V(r)

         Phase shift and cross section

         Applications

 

Section 6: Relativistic quantum mechanics

         Relativistic single particle theories

         Solution of Dirac equation: free particle

         Dirac equation: in EM field

         Dirac equation: covariant form

 

Section 7a: Classical fields

  • Discrete infinite degree of freedom

         System of harmonic oscillators

         Continuous infinite degree of freedom

         Field equations and Lagrangian density

         Hamiltonian density

 

Section 7b: Quantization of fields

  • Hamiltonian of a quantum field
  • Quantization of EM fields
  • Interaction of EM fields with atoms
  • Spontaneous emission
  • Gauge invariance and Dirac fields

 

 

Instructor:       Professor T.-M. Lu (lut@rpi.edu)

                        Office: CII 6015; Tel: x2979             

                        Office hours:

TA:      to be named (for homework and inclass)      

            Office:

            Office hours:

Grades:

            in-class: 10%   (checked by TA)        

            homework: 15%  (checked by TA. No late homework, solutions  

                        posted in Huntington lab at 12.00pm)

            midterm: 30% (5-8pm, March 15)

            final: 45%

 

         Take class attendance: no late attendance 

         Written notice from doctor is required if sick ( to Dr.  

            Lu and cc to TA) for any missing class

 

 Text book: Principles of Quantum Mechanics

            (Second Edition, R.Shankar, Springer)

            (Bring your book every class)

Class notes: will send you.