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THE SPHERICAL MODEL OF LOGARITHMIC POTENTIALS AS

EXAMINED BY MONTE CARLO METHODS

CHJAN C. LIM
AND JOSEPH NEBUS

Abstract. Euler’s equations for inviscid fluid flow are examined by a dis-
cretized version which represents the fluid in a Hamiltonian point-vortex prob-
lem on the surface of the unit sphere. The vorticities – the site strengths –
of these points are constrained to satisfy a spherical model, constraining the
circulation to a hyperplane and the enstrophy to the surface of a hypersphere.
The distribution of site strengths is allowed to vary according to a Monte Carlo
Metropolis-Hastings algorithm.

With this model the dependence of the system – as measured by a tool
called the mean nearest neighbor parity, by considering the energy of the sys-
tem over a number of Monte Carlo sweeps, by considering the distance between
the greatest and the least sites, and by the statistics of both the site values at a
given number of sweeps and of a single site over a number of sweeps – on such
parameters as the number of points, the statistical mechanics temperature,
and the number of sweeps used in the simulation are examined.

It is consistently found that in negative statistical mechanics temperatures
a solid-body rotational state is found. These negative temperature states
correspond to the expected distribution of site values, to the mean nearest
neighbor parity, and to the energy of the solid-body rotational state. The
positive-temperature state is not as strongly organized a state, and some of
the difficulties in distinguishing between chaotic and organized states in pos-
itive temperatures are outlined. Nevertheless it is established that the Monte
Carlo algorithm is an effective and fast method to model this point-vortex
system, and numerical evidence suggests that our expectation of finding a sin-
gle phase transition, between positive and negative inverse temperatures, is
supported experimentally.

1. Introduction

The problem of Euler’s equations for the inviscid flow of an incompressible fluid
on the surface of the sphere is a fascinating one, and one which can be rewritten
through vortex methods to be a Hamiltonian problem. This allows the use of
the rich set of tools designed to study dynamical systems to be applied. Using
either a particle or spatial discretization procedure one can derive finite dimensional
Hamiltonian problems for the inviscid evolution of vorticity in two dimension.

Onsager[10] proposed modeling the flow of a turbulent fluid through long-lived
point vortices. The distribution of these point vortices would become a problem of
finding a statistical equilibrium. This result depends upon the fluid modeled being
inviscid, and on the ergodicity of the point vortices. If one writes the entropy of the
system of point vortices as a function of energy then it is not a strictly increasing
function. There is a critical energy past which the entropy begins to decrease; and
this results in the phenomenon of negative temperatures. By Monte Carlo methods

1Contact address: limc@rpi.edu

1



2 CHJAN C. LIM AND JOSEPH NEBUS

in which we approach a minimum of the inverse temperature times the system
energy, this results at low energies – positive temperatures – in vortices of like signs
repelling one another and those of opposite signs attracting. At the extremely high
energies of negative temperatures the reverse happens, and vortices of like signs will
cluster together. If the vortices are permitted to change their location this results in
a clustering of like-signed sites. This negative temperature noted by Onsager is one
of the theoretical basis of the so-called inverse energy cascade for two-dimensional
turbulence. We expect that a similar observation will result from a lattice-based
simulation of two-dimensional Euler statistics.

Since it is much easier to perform numerics on a compact surface such as the
sphere, we will report on simulations of Euler statistics on the surface of the sphere.
If one uses a spatial lattice decomposition of the vorticity field, the kinetic energy
of fluid flow is again represented by a finite dimensional Hamiltonian function with
a logarithmic kernel, but the robust conserved quantities such as total circulation
and enstrophy become respectively the sum and sum of squares of the lattice site
vorticity values. It was observed by the first author in [7] and [9] that the discrete
form of the enstrophy is just the spherical constraint in a spin-lattice model known
as the spherical model. The spherical model was introduced by Berlin and Kac as
a model for ferromagnetism [1], and that is the purpose to which it has been most
often applied. We will refer to this statistical mechanics model of 2D inviscid fluid
flows as the energy-enstrophy-circulation theory since these are exactly the three
conserved quantities.

In this paper a Monte Carlo method based on a suitable modification of the
Markov Chain algorithm of Metropolis and Hastings [4] is employed to find several
statistical equilibria of the spherical model or energy-enstrophy-circulation theory.
Initially the Metropolis-Hastings algorithm is used to generate a mesh of points on
the surface of the sphere which covers the domain in a reasonably uniform manner.
Once this mesh is set, a new round of Monte Carlo is applied. Initially randomly
chosen vorticities are given to each mesh site so that the spherical constraints are set.
Then during this second round the vortices are given strengths which are allowed
to vary, provided the circulation and enstrophy are held constant (the spherical
model). From this a statistical equilibrium dependent on the inverse temperature
β is found.

A tool called the mean nearest neighbor parity is applied to determine in what
state the statistical equilibrium is. The dependence of the mean nearest neighbor
parity versus β is then explored as the size of the mesh changes and as the system
is allowed to evolve over time. These suggest the drawing of several conclusions
about the behavior of the spherical model of logarithmic potentials, some of which
may be checked against analytically known results.

We find that the numerical evidence points to the existence of a single phase
transition between a parallel state for negative temperatures and an anti-parallel
state at positive ones in the nonextensive thermodynamic limit [2]. The interme-
diate or chaotic state for a narrow range of β on both sides of 0, where the mean
parity has generally small absolute values, can be interpreted as the unavoidable
broadening of a phase transition in finite mesh simulations of critical phenomena
[11]. Finally the parallel state found when the inverse temperature is negative is
verified to be the solid-body rotational state as described by Lim [7].
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In this paper we present a new Monte-Carlo Markov chain algorithm based
on the Metropolis-Hastings method for updating the spins on a vortex lattice so
as to simultaneously fix the values of two independent first integrals, namely the
total circulation and enstrophy. We show that this algorithm is different from the
common one of swapping vorticity values at a pair of sites, and can in principle
reach all of the relevant phase space in the problem.

2. Model

The model under examination is derived from the Euler equation for inviscid
fluid flow on the surface of the sphere. It examines the fluid flow by the familiar
vortex representation of spatially decomposing the vorticity field into lattice site
values. Thereafter site strengths or spins si are allowed to vary subject to particular
constraints. The fluid flow kinetic energy of the system is modulo a singular self-
energy term given by

H(~s, ~x) = −
N∑

1≤i<j≤N
sisjJi,j(1)

with ~s = (s1, s2, s3, ..., sN ), ~x = (~x1, ~x2, ~x3, ..., ~xN ) and Ji,j the logarithm of the
distance between ~xi and ~xj which on the surface of a sphere takes the form in (2).

Of particular interest in this vortex model are the discretized total circulation,∑N
i=1 si = Γ, and enstrophy,

∑N
i=1 s

2
i = Ω. Both quantities are discrete approxima-

tions to the first and second moments of the vorticity field in 2D Eulerian flows and
so are conserved as the system evolves in real time [3]. Higher order moments of the
vorticity are conserved in principle but not in the approximate finite dimensional
models.

The Monte Carlo simulations done in this paper conserve both the discrete to-
tal circulation and the enstrophy and seek statistical equilibria of the lattice vortex
system for a wide range of values of the inverse temperature β. This sets the numer-
ical simulations to be a version of Kac’s spherical model discussed in the previous
section. Fixing the temperature of a statistical simulation is indicative of a method
based on Gibbs canonical statistics, that is, the lattice system interacts with a vir-
tual energy reservoir to reach equilibrium. However, because we also hold the total
circulation and enstrophy fixed, these constraints are modeled microcanonically.

The Gibbsian statistics of the spherical model or the energy-enstrophy-total
circulation theory are completely specified by sampling the system according to the
probability measure

P (~s;βN ,Ω,Γ) =
1

ZN(β,Ω,Γ)
exp (−βNHN (~s, ~x)) δ

(
N∑

i=1

s2
i −N

)
δ

(
N∑

i=1

si − Γ

)

where the sum in the partition function,

ZN(βN ,Ω,Γ) =
∑

~s

exp (−βNHN (~s, ~x)) δ

(
N∑

i=1

s2
i −N

)
δ

(
N∑

i=1

si − Γ

)

is taken over all lattice vortex vectors ~s. Metropolis’ algorithm for Monte Carlo
simulation is based on a clever Markov chain method to generate this invariant
measure [4]. The larger the size N of the lattice, the more sharply peaked is the
probability distribution around the most probable state ~s∗ [11]. Thus, for fixed βN
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and fixed N reasonably large, it will be a simple matter to run the algorithm and
find the statistical equilibrium ~s∗ with overwhelming probability P (~s;βN ,Ω,Γ) .

An effective simulation of a given Eulerian fluid flow on the sphere demands much
more. For given enstrophy

∫
D
ω2 = Ω > 0, we need to systematically increase the

mesh size N of the simulation to better approximate the continuum vorticity field
ω that will give us the most probable state within the class of vorticity fields of
zero total circulation and fixed enstrophy. While increasing the number of lattice
sites from N to N ′ we need to keep fixed the discrete enstrophy. Using a vorticity
scale factor νN to describe the procedure, we have

ν2
N

N∑

i=1

s2
i = ν2

N ′

N ′∑

i=1

s2
i = 1

by choosing

νN = N−1/2

and

N∑

i=1

s2
i = N.

To see how to keep the kinetic energy constant as we let N tend to ∞, we note
that for a continuous vorticity field ω,

H = −1

2

∫

S2

∫

S2

ω(x)ω(y) log |1− x · y|dA dA′.

Thus, for a uniform vorticity ω = ρ,

H = −ρ
2

2

∫

S2

∫

S2

log |1− x · y|dA dA′

= −8π2ρ2(log 2− 1).

Choosing this vorticity

ρ =
NνN
4π

to be consistent with the enstrophy scaling, we get

HN = −8π2N
2ν2
N

16π2
(log 2− 1)

= −N
2

(log 2− 1)

∼ N.

This motivates the temperature scaling below. We are obliged to use a properly
scaled simulation inverse temperature βN = β/N in order to keep the simulated
Gibbs factor e−βNHN constant when the lattice size N is increased to model a
vorticity field of fixed enstrophy.
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Collecting together the above scaling, we set [7]

N∑

i=1

s2
i = N

βN =
β

N

Ji,j = ν2
N log (1− ~xi · ~xj)(2)

νN = N−1/2(3)

To verify more rigorously that these scalings do work, we will now calculate the
energy directly. Since the simulated enstrophy is given by

ΩN =

N∑

i=1

s2
i = N,

this implies that the lattice site values si ∼ O(1). Then the energy

HN = −1

2

N∑

j

N∑

k 6=j
Jjksjsk ∼ O(N2ν2

N ) = O(N)

which agrees with the above rough estimate.
If we do a discrete Fourier transform based on the orthonormal set of eigenfunc-

tions Ymn of the Laplace-Beltrami operator on the sphere S2,

zq = N−1/2
N∑

j=1

Y ∗mnsj ,

we find that the energy can be diagonalized,

HN = −1

2

N∑

j

N∑

k 6=j
Jjksjsk

= − 1

N

N∑

|q|=1

a(q)|zq |2

where

a(q) = O(ν2
N |q|−2)(4)

are the eigenvalues of the energy interaction Jjk . It is well-known that the unscaled
operator inverse to the Laplacian-Beltrami operator on the sphere has eigenvalues
that behave like O(|q|−2) = O(N). By the fact that zq ∼ O(N1/2) (for sj ∼ O(1)
for all lattice size N) and (4), we again find that HN ∼ O(N). This Fourier diago-
nalization is essential for obtaining an exact expression of the partition function Z
of the spherical model in the limit as N tends to ∞. In that calculation the term

[p+ βa(q)]−1 =

[
p+

β

N
|q|−2

]−1

arises and again we see that it is natural to introduce the scaled inverse temperature
βN = β/N.

This non-extensive scaling of the inverse temperature is also known to be correct
for the thermodynamic limit of 2D vortex dynamics on a compact flow domain
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[2]. Between the compact domain, the minimum separation between sites, the
requirement that total circulation is zero and enstrophy be fixed, there will exist a
maximum possible energy achieved by this system. The existence of this maximum
possible energy therefore justifies the exploration of negative temperatures.

3. Implementation

The first problem presented in implementing this problem is choosing what the
mesh sites will be – what will be the fixed positions of the vortices. The goal is a
mesh which is approximately uniform over the domain without being so regular as
to make lattice artifacts likely. To achieve this, as well as to leave open the chance
of using a different mesh on different experiments, a similar Monte Carlo simulation
is run [8].

Begin with a collection of N points arbitrarily distributed on the sphere. Then
run a Metropolis-Hastings simulation of how these points distribute themselves if
each point represents a vortex of strength 1. Working with a large positive inverse
temperature of dispersal βd, this seeks a minimum of the potential

H(~x) = −
N∑

1≤i<j≤N
log (1− ~xi · ~xj)

which is achieved by maximizing the product of the distances between pairs of
particles. Each attempted move picks a site i at random, chooses an axis of rotation
~r = (

√
1− z2

i cos(θ),
√

1− z2
i sin(θ), zi) (with zi drawn uniformly from [−1, 1] and

θ drawn uniformly from [0, 2π)), and an angle of rotation ∆φ from (0,∆φm). The
experiment accepts or rejects the rotation of point ~xi by the angle ∆φ around axis
~r based on the Metropolis rule.

After just a few hundred sweeps – one sweep being N attempted moves of some
site, and so representing a few hundred attempts to move each vortex – this will
be a nearly but not quite symmetric pattern [8]. This is the mesh to use for this
experiment. (The same mesh can be reused for multiple experiments, by setting the
random number seed to the same number before generating the mesh, or by storing
the mesh in an externally generated file and reading that at program startup. The
advantage of reusing meshes is in the savings in startup time, and the greater ease
with which measures such as the mean nearest neighbor parity discussed here may
be compared; the disadvantage is any effects particular to one mesh will affect an
entire run of experiments. That disadvantage may be overcome by repeating the
experiments with new random number seeds for mesh generation, which is generally
desired anyway.)

Many methods have been explored to generate meshes covering the sphere so
that the distances between points are reasonably uniform, or so that the mesh has
multiple symmetries, or can be generated from basic rules. These were not employed
here partly out of concern that mesh effects might appear, but also because such
deterministic methods very often are applicable only to select numbers of mesh
points. An algorithm which can generate a very good covering of the sphere for
262 points may be completely unsuitable for 263 points. The Monte Carlo methods
clearly have no such limitations. Another advantage they possess, though not
employed in this paper, is that they may be applied to any compact domain, and
with some modification can be applied to unbounded domains as well [8].
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In the meshes generated for this paper the dispersal βd was taken to be 2, 000, 000
and 4, 096 complete sweeps were run before the mesh was used for further work.
The maximum angle of rotation ∆φm was 0.10.

With this mesh of points ~x1, ~x2, ..., ~xN then the spherical model simulation may
begin. An initial configuration of site values si are assigned. These are set to satisfy

∑

i

si = Γ(5)

∑

i

s2
i = Ω(6)

for the designated initial circulation Γ and initial enstrophy Ω.
In this second stage of Monte Carlo simulation a sweep is N attempted changes

of site values. In order to preserve circulation and enstrophy at all times each
attempted change must involve three sites. Given three sites s1, s2, and s3 the
attempted change is

s′1 = s1 − δ − ε
s′2 = s2 + δ

s′3 = s3 + ε

with the requirements that

δ =
(K + 1) · s1 − s2 −K · s3

K2 +K + 1
ε = K · δ

for a value of K chosen at random from [−1, 1].
IfK is held equal to zero, these attempted changes involve just two sites; however,

the proposed move is then equivalent to the swapping of the values of s1 and
s2. Though valid this leaves the Metropolis-Hasting algorithm to explore only the
permutations of the initial site values. Letting K vary (and it is only programming
convenience that keeps it from varying over all real numbers) allows the exploration
of all configurations preserving circulation and enstrophy.

Only a few hundred sweeps are needed before the simulation settles into one of the
states discussed in section 4. For the simulations in this paper, besides a calibrating
run of 1, 000, 000 sweeps used to estimate how many sweeps are needed until the
measured quantities settle to values near their long-term equilibrium values, 20, 000
sweeps were completed. This will be further explored experimentally in section 4.

Measuring which state the system is in requires some tool. We expect to describe
a state how likely it is any one site is surrounded by vortices of the same or of
opposite signs. This is analogous to the spin-spin correlations which are useful in
the Ising model, which need to be generalized to handle site values si which are
not necessarily plus or minus one, and to address a mesh which is not generally
organized.

Call the parity of any two sites i and j be the product of the signs of si and sj .
(If either site has vorticity zero their parity is zero.) The nearest neighbor parity
for site i is the parity of i and whatever site (or, potentially, collection of sites) is
nearest i. The mean nearest neighbor parity is the arithmetic mean of all these
nearest neighbor parities. Despite its ease of implementation and the apparently
clear match between the number and the intuitive sense of what state a system is in
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there are limitations which must be observed in applying this tool, some of which
will be discussed later in this paper.

One more convenient tool is a histogram of either the site values si after a certain
number of sweeps, or of a single site’s values over the course of the experiment. This
cannot be used by itself to determine the state of a system, but historical data over
many sweeps using this information can be informative, particularly when the mean
nearest neighbor parity is also calculated.

Another measuring tool is to measure the distance from the ‘north vorticity
pole,’ the site with greatest vorticity, to the ‘south vorticity pole,’ the site with
least vorticity. As with the histogram data it is most informative when it can be
viewed over the course of an experiment, rather than serving as a measure for a
single collection of site values.

4. Results

Lim suggests analytically [6] [7] that we may expect up to three phases for this
model, which can be observed numerically.
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Figure 1. An example of the parallel state. For this example
there are 256 points, with β = −10 and run for 1, 000, 000 sweeps.

First is the parallel state (figure 1), which is only observed for negative inverse
temperatures β < 0. In this state any vortex is most often surrounded by vortices
of the same sign. This is a high-energy state, and the mean nearest neighbor parity
is near one. Examining a histogram of site values after a fixed number of sweeps
(figure 1 c) shows the site values seem distributed approximately uniformly from
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a minimum to a maximum value. We have reason to believe this mode will be
approximately that of the first spherical harmonic, a constant times the cosine of
the angle between a site and the north vorticity pole. An individual site’s value
(figure 1 d) is dominated by a sharp peak, indicating where the site’s values have
settled.

The distance between the north vorticity pole and the south vorticity pole in
this state tends to be well-behaved (see figure 5). It is favorable for the energy to
maximize the product sisj for neighboring sites, so that strong vortices of either
sign are surrounded by other strong vortices of like sign. The result is that the
distance between the greatest positive and the greatest negative sites approaches
2. That there remains some fluctuation in this distance as the number of sweeps
continues is a reflection that neighboring sites tend to have similar magnitudes.

The plots of site vorticities over the sphere included in this section are of a
Voronoi-type diagram: the shading of a point reflects the intensity of the mesh
site nearest it. This appeared to be the simplest way in which to illustrate the
vorticities.
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Figure 2. An example of the chaotic state. For this example
there are 256 points, with β = 0 and run for 1, 000, 000 sweeps.

In the chaotic state – seen when the inverse temperature β is near zero – there
is no particular alignment among vortices (figure 2). The energy in this case never
settles, and it fluctuates wildly while the simulation runs. Examining the site values
after a fixed number of sweeps (figure 2 c) finds them tending towards a Gaussian
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distribution with a large standard deviation; examining the histogram of a single
site’s values over time (figure 2 d) finds a similar range.

Here too the distance between the north and south vorticity poles may be mea-
sured (figure 5); it will tend to fluctuate wildly and never settle around any value.
There is little reason for any one site to remain either vorticity pole, so that both
wander over the surface of the sphere freely.
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Figure 3. An example of the antiparallel state. For this example
there are 256 points, with β = 10 and run for 1, 000, 000 sweeps.

The antiparallel state is a low-energy state, in which each vortex is surrounded
by ones of the opposite vorticity (figure 3). While a histogram of all the site values
after a fixed number of sweeps (figure 3 c) finds a Gaussian distribution with wide
standard deviation, the examination of a single site’s values (figure 3 d) in time
shows a smaller deviation.

The behavior of the distance between north and south vorticity poles is more
interesting in this case than it is for the parallel or the chaotic states: it often shows a
pattern of small fluctuations interrupted by large jumps (though they are obscured
in the simulation used to generate figure 5). The process here is that each site
will tend to have a nearest neighbor of opposite sign, and the Metropolis-Hastings
algorithm’s tendency to reduce the energy when β is positive makes states in which
sisj is minimized more probable. This pairwise product can be maximized, when
the enstrophy has to stay constant, by having si and sj of roughly equal magnitude
and opposite sign. The result is the antiparallel state tends to create ‘dipoles,’
neighboring pairs of approximately equal magnitude and opposite sign.
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Generally, multiple dipole pairs will tend to be created, and they will tend to
have approximately equal sizes. Often there will even be a chain of alternating signs
and roughly equal magnitude over a good segment of the sphere. (The example
plotted in figure 3 lacks a good long chain, but it does have a checkerboard-like
pattern of positive and negative in the upper right of the picture, showing these
dipoles collected into a quite organized island.) The result is the minor fluctuations
in site values along these multiple dipole pairs will make either vorticity pole jump
among several nearly equal sites. The result is a progression of times when the
same two sites (not necessarily in a single dipole pair) are the vorticity poles, with
sudden jumps when another site’s magnitude grows enough to become one of them.

The expectation is that nearest neighbors will have opposite sign, and the drive
to minimize energy while holding enstrophy constant encourages the nearest neigh-
bors to have roughly equal magnitude. This indicates that we may expect – if
we assume the north and south poles will eventually settle around one dipole of
nearest neighbors – the distance to approximate 2π

N , roughly the distance of any
neighboring pair of vortices. In the example used for figure 3 the minimum distance
is 0.022; as 2π

256 is 0.025 this reinforces our supposition that the mesh generated is
close to uniform and the north and south vorticity poles are being drawn as close
together as possible.

(An interesting side effect of the spherical model is that the standard deviation
of the site vorticities at any one sweep is a function of the enstrophy, circulation,
and number of sites. It is independent of the Monte Carlo process and of what
state the system is in.)
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Considered now is the effect on the mean nearest neighbor parity of the number
of sweeps completed. This is needed to establish in part how long the experimental
runs need to be in order to have an estimate of the system’s state measured correctly.
Figure 4 presents the evolution of the mean nearest neighbor parity of a system
with 256 points and circulation 0 run for 1, 000, 000 sweeps.

The first question is whether this change in the mean nearest neighbor parity
as the sweep count increases reflects the system settling into its final state, and
what that state ultimately is. For negative β the mean nearest neighbor parity
over time (excluding the first data point, which was the initial random assignment)
has a mean of 0.86 with a standard deviation of 0.04. (These numbers are rather
consistent across multiple runs and different meshes.) The mean nearest neighbor
parity for that mesh with site values assigned to match those of the first spherical
harmonic (which we expect the system approaches) is 0.8359.

(Another interesting point indicating the uniformity of the meshes generated by
the Metropolis-Hastings algorithm here is that multiple meshes of 256 points were
generated, each with different seed values. The ‘spherical harmonic’ mean nearest
neighbor parity for each of them was close to 0.836 despite the meshes not being
identical.)

In positive β the mean nearest neighbor parity fluctuates more, and one may
fairly question whether the value is settling at all. Here some statistical examina-
tion of the mean nearest neighbor parity evaluated at different times is useful: a
histogram of mean nearest neighbor parity values at these different sweep counts
reveals them to appear reasonably close to a bell curve. For this particular run
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at positive β the mean of the mean nearest neighbor parities after the first data
point is −0.55 with a standard deviation of 0.06. (As above the mean and standard
deviation are rather consistent across multiple runs and different meshes.)

We try to explain this consistently greater fluctuation in the mean nearest neigh-
bor parity versus sweeps completed for positive β than for negative β. Doing so
highlights one of the problems in relying solely on the mean nearest neighbor parity
for studying the system.

Obviously the mean nearest neighbor parity measures only the sole neighbor
closest to a site. Consider an antiparallel state which has three sites near the
vertices of an equilateral (spherical) triangle; let two be positive and one negative.
If the longer leg is only marginally longer than the other pairs there is only a weak
preference to have a positive and negative pair on the shortest of the legs, with a
parity of −1, rather than to have both positives on that shortest leg, with a parity
of 1.

(There is also that the Monte Carlo method as programmed is unlikely at any
one experiment to attempt a move which would invert the signs of the two “mis-
aligned” sites. A sufficiently long run will eventually try swapping them, although
the interactions with other neighboring sites may not guarantee that it will be
approved.)

This effect does not occur in the parallel state where all points nearby any one
site – except for the relatively few points on the ‘equator’ between positive and
negative regions – are of the same sign. (Note that a greater fraction of points
are near the equator when there are few mesh sites than when there are many;
and as would be expected, the mean nearest neighbor parity is on average closer
to zero for these smaller meshes and closer to 1 for larger ones.) Consequently the
antiparallel state will have a greater number of sites which are ‘incorrectly’ aligned
for the state.

One method which could improve this measure would be to identify all the
neighbors of each site, and take the mean neighbor parity over all its adjacent sites.
Nevertheless the mean nearest neighbor parity approximates its long-term mean
value after as few as 20, 000 sweeps. We may take its value, with the recognition
that there must be an error margin whose size decreases as the number of mesh sites
N increases, to be approximately the equilibrated mean nearest neighbor parity.

The mean nearest neighbor parity is plotted as a function of inverse temperature
β for different mesh sizes in Figures 6 and 7. The temperature scales are different for
negative and for positive β, which reflects the different scales on which interesting
behavior appears to occur.

There is a dependence of the parity on N for negative β. As the number of points
in the mesh increases the mean nearest neighbor parity increases, approaching 1,
and while the parity does eventually fall towards zero the inverse temperature at
which it falls approaches zero. The suggestion is then that as the mesh size increases
the parity approaches 1 for all negative temperatures – which is to be expected,
as the parallel state is a high-energy state and this is characteristic of negative
temperatures.

The dependence of the parity on N for positive β is almost identical. At β = 0
the system is chaotically arranged; as β increases the mean nearest neighbor parity
drops towards about −0.5. From the considerations mentioned above it is unlikely
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Figure 6. Mean nearest neighbor parity versus negative β for
different mesh sizes N .

that the system could be driven to produce a mean nearest neighbor parity much
less than that.

It is expected from the analyses of Lim [7] that the negative temperature state
should see solid-body rotation – the vorticity over the sphere behaving like the
first spherical harmonic. This is observed for negative temperatures. An example
is included in figure 8. The sphere was divided into bands representing an equal
angular separation from the axis between the north and the south vorticity poles.
Within each band was calculated the mean angular separation between mesh sites
in that band and the north-south axis, and the mean vorticities for the mesh sites
in that band. This mean vorticity is then plotted as a function from 0 to 2π,
representing the angle from the north vorticity pole.

Plotted on the same axes in figure 8 is a cosine wave, the function A · cos(θ),
with A chosen to be the maximum absolute value of any one site and θ the angle
from the north vorticity pole. The agreement between the measured vorticity and
the estimated cosine wave is excellent, suggesting that this parallel state is the first
spherical harmonic.

From this it appears the negative temperature settles into a solid-body state
and that state is the first spherical harmonic as predicted. With some curve-fitting
we can even find the harmonic which best approximates this particular solid-body
rotation: the vorticity is approximately

f(~x) = A · Y 0
1 (acos(~n · ~x))(7)

= A · (~n · ~x)(8)
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Figure 7. Mean nearest neighbor parity versus positive β for dif-
ferent mesh sizes N .

with ~n the unit vector from the south vorticity pole to the north vorticity pole. The
axis of rotational symmetry for the rotated spherical harmonic is parallel to the axis
from the north vorticity pole to the south vorticity pole of the corresponding solid-
body state. The result are two functions which agree closely. The two are plotted
in figure 9.

One also may compare the energy of these solid-body states to the energy which
would be expected if each mesh site had the value the first spherical harmonic
would predict. These are compared for the various mesh sizes in figure 10; the
figures agree well.

The good experience with fitting a spherical harmonic to the solid-body state
suggests this offers a better tool to distinguish chaotic from antiparallel states:
finding the spherical harmonic functions which approximate the chaotic state should
find all wavelengths represented, while the antiparallel state should see the shortest
wavelengths dominant [7]. This approach does not work.

We expect in the antiparallel state to see oscillations with a wavelength approx-
imately twice the distance between nearest points. But these wavelengths are at
the limit of what could be calculated even in theory. More, the distance between
nearest neighboring sites varies – the result being that the ‘shortest’ wavelength
which might be expected to have the greatest amplitude will be spread out over
a range of different values. The result is that these spectral methods do not work
efficiently in distinguishing the antiparallel from the chaotic states.
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Figure 9. A solid-body state (left) compared to a spherical har-
monic (right), on the same mesh and both with ‘axes’ from the
south to the north vorticity poles parallel.

5. Conclusions

Monte Carlo simulation of the spherical model finds evidence for the existence
of three states for the system, which may roughly be classified by the likelihood a
site has as its neighbors sites of the same or of the opposite sign. These present
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Figure 10. Energy of the parallel state as a fraction of the spher-
ical harmonic’s energy on the same mesh.

two organized states, one with most sites parallel to their neighbors and one with
most sites antiparallel to their neighbors, and one disorganized state.

It is not difficult to distinguish the parallel state from the two others. It has
a large positive value for the mean nearest neighbor parity. It has the distance
between the greatest positive and the greatest negative sites close to the diameter
of the sphere. Its site values at any time after it has settled into the state are more
uniformly distributed than the other states are. It can be approximated very well
by a simple spherical harmonic. Finally, its energy is quite high.

It is distinguishing between the chaotic and the antiparallel states that is more
difficult. Study through spherical harmonics is unproductive. The distance between
the north and south vorticity poles for a single state cannot be relied upon, although
its evolution over a number of sweeps is unmistakable. The mean nearest neighbor
parity offers some guidance but it can be mislead by the number of states with
near-zero values which are able to drive its value towards zero. The magnitude of
its energy for any one state is not conclusive either.

An historical record of site values over the course of a simulation would dis-
tinguish between a chaotic and an antiparallel state in the cases when the mean
nearest neighbor parity is ambiguous: the chaotic system sees wider fluctuations
in the energy and in any one site’s values, while the antiparallel one sees a settled
energy and a tight bell curve of any one site’s values. That this suggests a single
collection of site values could not have its state measured underscores that the mean
nearest neighbor parity can be used to distinguish between different states, but does
not by itself describe the behavior of the system. There is no cutoff that a system
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with mean nearest neighbor parity less than some chosen border is antiparallel; but
the progression of mean nearest neighbor parities as another parameter is changed
gives some insight into how the behavior of the system depends on that parameter.

Nevertheless the trend is always for the mean nearest neighbor parity to be a
large positive number for negative β, falling towards zero as the inverse temperature
approaches zero, and then continue falling towards −1 as for positive β. In contrast
to the analysis in [7], this is supportive of a single phase transition occurring at
β = 0, the transition between negative and positive temperatures and the transition
between the parallel and antiparallel states. A revised study in [9] confirms this
conclusion of a single phase transition.

Though the values of the mean nearest neighbor parity fluctuate as the number
of Monte Carlo sweeps increases, the size of those fluctuations remains small after
the first few thousand sweeps – after a short settling period, essentially – and the
size of those fluctuations decreases as the number of points N increases.
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