Professor
Department of Mathematical
Sciences
Rensselaer Polytechnic
Institute
Troy, New York 12180-3590
E-mail: kovacg at rpi dot edu
Telephone: (518) 276-6908
Fax: (518) 276-4824
Ph.D. California Institute of Technology, Applied Mathematics, 1990
Research Interests
Matematical neuroscience, wave dynamics, integrable systems,
nonlinear resonant optics.
W. Lee, G. Kovacic, and D. Cai [2018]. Cascade model of wave turbulence, Phys. Rev. E 97, 062140.
S. Li, G. Biondini, G. Kovacic, and I. R. Gabitov, [2018]. Resonant optical pulses on a continuous wave background in two-level active media, Europhysics Letters 121, 20001.
V. J. Barranca, G. Kovacic, D. Zhou, and D. Cai [2016]. Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling, Nature Scientific Reports 6, 31976.
V. J. Barranca, G. Kovacic, D. Zhou, and D. Cai [2016]. Efficient Image Processing Via Compressive Sensing of Integrate-And-Fire Neuronal Network Dynamics, Neurocomputing 171, 1313-1322.
D. Kraus, G. Biondini, and G. Kovacic [2015]. The focusing Manakov system with nonzero boundary conditions, Nonlinearity 28(9), 3101.
K. A. Newhall, M. S. Shkarayev, P. R. Kramer, G. Kovacic, and D. Cai [2015]. Synchrony in Stochastically Driven Neuronal Networks with Complex Topologies, Phys. Rev. E 91, 052806.
V. J. Barranca, G. Kovacic, D. Zhou, and D. Cai [2014]. Network Dynamics for Optimal Compressive Sensing Input Signal Recovery, Phys. Rev. E 90, 042908.
V. J. Barranca, G. Kovacic, D. Zhou, and D. Cai [2014]. Sparsity and Compressed Coding in Sensory Systems, PLOS Comput. Biol. 10(8), e1003793.
G. Biondini and G. Kovacic [2014]. Inverse scattering transform for the focusing nonlinear Schroedinger equation with nonzero boundary conditions, J. Math. Phys. 55(3), 031506.
V. J. Barranca, D. C. Johnson, J. L. Moyher, J. P. Sauppe, M. S. Shkarayev, G. Kovacic, and D. Cai [2014]. Dynamics of the Exponential Integrate-and-Fire Model with Slow Currents and Adaptation, J. Comput. Neurosci. 37(1), 161-180.
A. O. Korotkevich, K. E. Rasmussen,
G. Kovacic, V. Roytburd, A. I. Maimistov, and I. Gabitov [2013]. Optical Pulse Dynamics in Active
Metamaterials with Positive and Negative Refractive Index,
JOSA B 30(4), 1077-1084.
K. A. Newhall, E. P. Atkins, P. R. Kramer,
G. Kovacic, and I. Gabitov [2013]. Random Polarization Dynamics in a Resonant Optical Medium,
Opt. Lett. 38(6), 893-895.
W. Lee, G. Kovacic, and D. Cai [2013].
Generation of Dispersion in Non-Dispersive Nonlinear Waves in Thermal Equilibrium,
Proc. Natl. Acad. Sci. U.S.A.
110(9), 3237-3241.
E. P. Atkins, P. R. Kramer,
G. Kovacic, and I. Gabitov [2012]. Stochastic Pulse Switching in a Degenerate Resonant Optical Medium,
Phys. Rev. A 85,
043834.
M. S. Shkarayev, G. Kovacic, and D. Cai [2012]. Topological effects on dynamics in
complex pulse-coupled networks of integrate-and-fire type,
Phys. Rev. E 85,
036104.
D. Cai, L. Tao, M. S. Shkarayev, A. V. Rangan, D. W. McLaughlin, and G. Kovacic [2012].
The Role of Fluctuations in Coarse-Grained Descriptions of Neuronal Networks,
Comm.
Math. Sci., 10, 307-354.
M. M. Crosskey,
A. T. Nixon, L. M. Schick, and G. Kovacic [2011]. Invisibility Cloaking via Non-Smooth Transformation
Optics and Ray Tracing,
Phys. Lett. A 375, 1903-1911.
K. A. Newhall,
G. Kovacic, P. R. Kramer, and D. Cai [2010]. Cascade-Induced Synchrony in
Stochastically-Driven Neuronal Networks,
Phys. Rev. E 82,
041903.
K. A. Newhall,
G. Kovacic, P. R. Kramer, D. Zhou, A. V. Rangan, and D. Cai [2010]. Dynamics of Current-Based,
Poisson Driven, Integrate-and-Fire Neuronal Networks,
Comm. Math. Sci.,
8, 541-600.
I. Fatkullin,
G. Kovacic, and E. VandenEijnden [2010]. Reduced dynamics of
stochastically perturbed gradient flows,
Comm.
Math. Sci., 8, 439-461.
M. S. Shkarayev,
G. Kovacic, A. V. Rangan, and D. Cai [2009]. Architectural and functional connectivity in scale-free
integrate-and-fire networks, Europhys. Lett. 88, 50001.
G. Kovacic, L. Tao, A. V. Rangan, and D. Cai [2009]. Fokker-Planck
Description of Conductance-Based
Integrate-and-Fire Neuronal Networks,
Phys. Rev. E 80, 021904.
A. V. Rangan, L.
Tao, G. Kovacic, and D. Cai [2009]. Large-scale computational
modeling of the primary visual cortex, in
Coherent Behavior in Neuronal Networks, K. Josic, M. Matias, R. Romo, J. Rubin Eds., Springer
Series in Computational Neuroscience , Vol. 3,
Springer-Verlag.
W. Lee, G. Kovacic, and D. Cai [2009].
Renormalized Resonance Quartets in Dispersive Wave Turbulence,
Phys. Rev. Lett. 103,
024502.
A. V. Rangan, L.
Tao, G. Kovacic, and D. Cai [2009]. Multi-scale modeling of the
primary visual cortex, IEEE Engineering in Medicine and Biology
Magazine 28(3), 19-24. A. V. Rangan, G.
Kovacic, and D. Cai [2008]. Kinetic theory for neuronal networks
with fast and slow excitatory conductances driven by the same spike
train, Phys. Rev. E 77, 041915. G. Kovacic, L.
Tao, D. Cai, and M. J. Shelley [2008]. Theoretical analysis of
reverse-time correlation for idealized orientation tuning dynamics,
J. Comput. Neurosci. 25(3), 401-438. J. A. Byrne, G.
Kovacic, and I. R. Gabitov [2003]. Polarization switching of light
interacting with a degenerate two-level optical medium, Physica
D 186, 69-92. R. V. Abramov, G.
Kovacic, and A. J. Majda [2003]. Hamiltonian structure and
statistically relevant conserved quantities for the truncated
Burgers-Hopf equation, Commun. Pure Appl. Math. 56 (1),
1-46. M.
Frankel, G. Kovacic, V. Roytburd, and I. Timofeyev [2000].
Finite-dimensional dynamical system modeling thermal instabilities,
Physica D 137, 295-315. R. Camassa, G.
Kovacic, and S.-K. Tin [1998]. A Melnikov method for homoclinic
orbits with many pulses, Arch. Rat. Mech. Anal. 143,
105-193. A.
B. Aceves, D. D. Holm, G. Kovacic, and I. Timofeyev [1997].
Homoclinic orbits and chaos in a second-harmonic generating optical
cavity, Phys. Lett. A 233, 203-208. T. J. Kaper and
G. Kovacic [1996]. Multi-bump orbits homoclinic to resonance bands,
Trans. AMS 348, 3835-3887. D. D. Holm, G.
Kovacic, and T. A. Wettergren [1996]. Homoclinic orbits in the
Maxwell-Bloch equations with a probe, Phys. Rev. E 54,
243-256.
G. Kovacic and T. A. Wettergren [1996]. Homoclinic orbits in the
dynamics of resonantly driven coupled pendula, ZAMP
47, 221-264. G. Kovacic
[1995]. Singular perturbation theory for homoclinic orbits in a
class of near-integrable dissipative systems, SIAM J. Math.
Anal. 26, 1611-1643. D. D. Holm, G.
Kovacic and T. A. Wettergren [1995]. Near-integrability and chaos in
a resonant-cavity laser model, Phys. Lett. A 200,
299-307.
T. J. Kaper and G. Kovacic [1994]. A geometric criterion for
adiabatic chaos, J. Math. Phys. 35 (3), 1202-1218.
G. Kovacic
[1993]. Singular perturbation theory for homoclinic orbits in a
class of near-integrable Hamiltonian systems, J. Dynamics Diff.
Eqns. 5, 559-597. G. Kovacic [1992]. Dissipative
dynamics of orbits homoclinic to a resonance band, Phys. Lett.
A 167, 143-150. G. Kovacic [1992]. Hamiltonian dynamics
of orbits homoclinic to a resonance band, Phys. Lett. A
167, 137-142. G. Kovacic and S. Wiggins [1992]. Orbits
homoclinic to resonances with an application to chaos in a model of the
forced and damped Sine-Gordon equation, Physica D 57,
185-225. D. D. Holm and G. Kovacic [1992]. Homoclinic chaos in a
laser-matter system, Physica D 56, 270-300. A.
Aceves, D. D. Holm, and G. Kovacic [1992]. Homoclinic chaos due to
competition among degenerate modes in a ring-cavity laser, Phys.
Lett. A 161, 499-505. D. D. Holm, G. Kovacic, and B.
Sundaram [1991]. Chaotic laser-matter interaction, Phys. Lett.
A 154, 346-352. D. D. Holm and G. Kovacic [1991].
Homoclinic chaos for ray optics in a fiber, Physica D
51, 177-188. G. Kovacic [1991]. Lobe area via action formalism
in a class of Hamiltonian systems, Physica D 51,
226-233.
MATH-2010, Multivariable Calculus and Matrix Algebra, available on LMS.
A
picture of the current, past, and honorary RPI mathematics team members at the IMACS conference in Athens, GA, 2015.
Poems by my wife,
Miriam Herrera.
Courses
Links
Discrete
and Continuous Dynamical Systems - Series S, for which I am on the editorial commitee.