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ABSTRACT

The breakdown of biogeographic barriers allows some invasive species to reshape ecological communities and
threaten local biodiversity. Most introductions of exotic species fail to generate an invasion. However, once
introduction succeeds, invader density increases rapidly. We apply nucleation theory to describe spatio-temporal
patterns of the invasion process under preemptive competition. The predictions of the theory are confirmed by
Monte Carlo simulations of the underlying discrete spatial stochastic dynamics. In particular, for large enough
spatial regions, invasion occurs through the nucleation and subsequent growth of many clusters of the invasive
species, and the global densities are well approximated by Avrami’s law for homogeneous nucleation. For smaller
systems or very small introduction rates, invasion typically occurs through a single cluster, whose appearance is
inherently stochastic.
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1. INTRODUCTION

Human-caused environmental changes have eroded natural barriers to the long-distance dispersal of plants and
animals.1 Consequently, expanding geographic ranges of invasive species have begun to homogenize the biota
of different regions.2 Successful exotic invaders often replace native species, and produce additional economic,
epidemiological or agricultural problems in their new environments.3 Many exotics, including certain species
purposefully introduced by humans,4 combine a low probability of establishment at each introduction with
rapid population growth once introduction succeeds. Modeling introduction as a rare stochastic process, the
conditions for homogeneous mixing and the applicability of the corresponding mean-field equations immediately
break down. In this case either continuum5 or discrete6 (individual-based) spatial models are needed to address
the problem.

In this paper we investigate a discrete spatial model for ecological invasion. Initially the spatial region is
fully dominated by the “resident” species. The “invader” species is introduced stochastically where resources
are locally available. The invader has an individual-level advantage over the residents, but the low probability
of introduction, combined with a discrete spatial dynamics, can prevent the spread of the invader for extended
times. Here we consider a model where the residents and the competitively superior invaders compete for a
common limiting resource preemptively.7–10 We demonstrate that under these conditions, invasion is governed
by nucleation and growth11–14 of clusters of the invasive species. A relatively old empirical study15 on primary
ecological succession in sand-dune communities, where persistent vegetation (oak-pine forest) replaces colonizing
grassland during succession, motivates our hypothesis that nucleation theory can explain important properties
of biological invasion.
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2. THE MODEL

We consider an L×L lattice with periodic boundary conditions. Each site can be empty or occupied by a
single individual (either a resident or an invader). A lattice site represents the minimal level of locally available
resources required to sustain an individual organism, hence the “excluded volume” constraint. We introduce the
local occupation numbers at site x, ni(x) = 0, 1, i = 1, 2, representing the number of residents and invaders,
respectively. By virtue of the excluded volume constraint, n1(x)n2(x) = 0. New individuals can arise, where
resources are available, by two distinct mechanisms. First, invaders are introduced randomly at empty sites.
This spatially homogeneous stochastic process corresponds to a (typically weak) “background” capturing the
effect of long-distance propagule dispersal. (In this paper we do not allow a similar process involving the resident
species, but including immigration of resident individuals does not change the universal characteristics of the
invasion dynamics since residents fully dominate the region initially.16) Second, new individuals of both species
can be produced through local clonal propagation. That is, an individual occupying site x may reproduce if one
or more neighboring sites are empty. (Most of the work presented here considers nearest-neighbor colonization
only, but preliminary results with the inclusion of next-nearest neighbors are discussed in Sec. 5). Competition
for resources, hence space, is preemptive; therefore, an occupied site cannot be colonized by either species until
the current occupant’s mortality leaves that site empty.

We performed dynamic Monte Carlo simulations to study the model. Our time unit is one Monte Carlo
step per site (MCSS) during which L2 sites are chosen randomly. If the site is empty, introduction or clonal
propagation from the surrounding neighborhood can occur. The rate for introduction of an invader is β. The
rate for colonization by species i occupying neighboring sites, is given by αiηi(x), where αi is the individual-
level colonization rate and ηi(x) = (1/δ)

∑
x′εS(x) ni(x′) is the density of species i around site x. S(x) is the

set of neighbors of site x and δ is the size of this neighborhood. (For nearest-neighbor colonization on a two-
dimensional regular lattice, there are four such neighbors, δ=4.) If the site is occupied, the individual dies at
rate µ (regardless of the species). We can summarize the local transition rules for an arbitrary site x as

0
α1η1(x)−→ 1 , 0

β+α2η2(x)−→ 2 , 1
µ−→ 0 , 2

µ−→ 0 , (1)

where 0, 1, 2 indicates whether the site is empty, occupied by a resident, or an invader, respectively.

In the simulations, we initialized the system fully occupied by the resident species (n1(x)=1 for all x). We
are interested in the parameter region where β � µ < α1 < α2, so that introduction is a rare process, but the
invaders have a reproductive-effort advantage. Then, due to mortality, the system quickly relaxes (much too
fast for invader introduction to play a role) to the“quasi-equilibrium” state where the resident’s population is
balanced by its own clonal propagation and mortality rates (in the near absence of invaders). Throughout each
simulation, we track the time-dependent global densities of the two species, ρi(t) = (1/L2)

∑
x ni(x, t). We define

the lifetime τ of the residents (also referred to as the invasion time) as the first passage time of the residents’
global density to one-half of its quasi-equilibrium value ρ∗1.

3. BASIC CHARACTERIZATION: SINGLE-CLUSTER AND MULTI-CLUSTER
INVASION

As a result of rare introductions, individuals of the invasive species occasionally appear in the community. An
invader lacking access to nearby resources may die without propagating. If a site opens in the local neighborhood
(resource becomes available), the invader may colonize it. However, the empty site is likely surrounded by more
than one resident. The resident’s greater local density can compensate for its lower individual-level colonization
rate, so the resident has the better chance of colonizing an empty site. Consequently, one expects small clusters
of invaders to shrink and disappear. Residents, although weaker competitors, can prevail for some time, since
preemptive competition imposes a strong constraint on the growth of the invaders. Invaders can succeed only
if they generate a cluster sufficiently large (with a radius greater than a critical radius Rc) that it statistically
tends to grow at its periphery.

Snapshots of configurations confirm the existence of a critical cluster size, beyond which the spread of the
invader becomes statistically favorable. Further, we performed a special set of simulations, with appropriately
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Figure 1. Success rate of an invasive compact cluster as a function of its initial cluster size A(0) for L=128, α1=0.70,
α2=0.80, and µ=0.10. Solid circles and squares represent the data for a “circular”-shaped and square-shaped initial
invasive cluster on a lattice, respectively.

Figure 2. Configuration snapshots in the SC regime for β=10−6, L=128, α1=0.70, α2=0.80, and µ=0.10. The three
configuration snapshots, from left to right, correspond to time steps t = 1300 MCSS, t = 2000 MCSS, and t = 3000
MCSS. White represents empty sites, gray and black correspond to sites occupied by residents and invaders, respectively.

modified initial conditions and with further introduction suppressed (β=0), to obtain an estimate of the critical
cluster size. We placed an initial single compact invader cluster of area A(0) in the background of the equilibrium
density of the residents, and measured the success rate Psuccess for this cluster (out of 10,000 trials). For the
parameter values used in this paper, we found that the success rate increases above 50% for an initial compact
cluster of about nine sites, corresponding to Rc≈2 [Fig. 1]. Also, successful invasion becomes near certain for
A(0)>25.

Snapshots also reveal strongly clustered growth of the invading species. For a given set of parameters, there
exists a characteristic length scale Ro, the average spatial separation of invading clusters; for L�Ro the invasion
almost always occurs through the spread of a single invading cluster [single-cluster (SC) invasion], while for
L�Ro the invasion is the result of many invading clusters [multi-cluster (MC) invasion]. Conversely, fixing the
linear system size L and other parameters (except the introduction rate), there is a characteristic value of β (now
controlling Ro), such that for sufficiently low values of β, MC invasion crosses over to the SC pattern. These two
different invasion modes, SC and MC, are illustrated by the snapshots in Fig. 2 and Fig. 3, respectively.

We also observe drastically different stochastic properties of the two invasion regimes, as can be seen from
the time series of the global densities in Fig. 4. In the SC regime the appearance of the first (and almost always
the only) successful invasive cluster is inherently stochastic [Fig. 4(a)]; the variance of the lifetime is comparable
to its mean. In contrast, in the MC regime the global densities become self-averaging with a near-deterministic
lifetime [Fig. 4(b)].

Proc. of SPIE Vol. 5841     119



Figure 3. Configuration snapshots in the MC regime for β=10−4, L=128, α1=0.70, α2=0.80, and µ=0.10. Note that all
parameters are the same as in Fig. 2, except for β. The three panels, from left to right, correspond to time steps t = 100
MCSS, t = 600 MCSS, and t = 1000 MCSS. Sites are color coded as in Fig. 2.
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Figure 4. Five independent realizations of the time series of the two species’ global densities during (a) SC invasion.
Matching pairs of ρ1(t) and ρ2(t) intersect near a density of 0.425. (b) MC invasion. The parameters are the same as
those in Fig. 2 and Fig. 3 for (a) and (b), respectively, i.e., L=128 for both, β=10−6 in (a) and β=10−4 in (b).

4. HOMOGENEOUS NUCLEATION AND GROWTH

The above picture suggests that one can apply the framework of homogeneous nucleation and growth11–13 to
describe the spatial and temporal characteristics of the spread of the invasive species. This framework, commonly
referred to as KJMA11–13 theory or Avrami’s law, has successfully described analogous dynamic phenomena in
ferromagnetic17–20 and ferroelectric materials,21, 22 chemical reactions,23 DNA replication,24 and ecological
systems.16, 25

The simplest version of KJMA theory, in our ecological context, assumes that nucleation of an invading cluster
is a Poisson process with nucleation rate per unit area I (constant in space and time). Further, it assumes that
once a successful invading cluster has been nucleated, it grows deterministically with a constant radial velocity v.
Since the derivation of KJMA theory is readily accessible in a number papers (see, e.g., Refs.16, 21) including the
original ones,11–13 here we present only the results and a simple scaling argument17, 19 to obtain the governing
time and length scales in the SC and MC regimes.

For small systems, L � Ro (Ro to be determined later), invasion almost always occurs through the spread of
a single invading cluster (the first one which nucleates and sweeps the system before another one appears)16–18

(SC invasion). Since randomness appears only in the introduction (growth is assumed to be deterministic), the
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statistics of the invasion times are related trivially to the underlying Poisson process. The cumulative probability
of the invasion times Pnot(t) = Prob{τ > t}, i.e., the probability that the resident’s global density has not decayed
to ρ∗1/2 by time t, has an exponential distribution

Pnot(t) =
{

1 for t ≤ tg
exp[−(t − tg)/〈tn〉] for t > tg

, (2)

where 〈tn〉 = [L2I]−1 is the average nucleation time and tg ∼ L/v is the deterministic growth time until the
invasive species dominates half of the system. For very small nucleation rates per unit area, the lifetime of
the resident species is governed by the large average waiting time until the the first successful invader cluster
nucleates, hence 〈τ〉 = 〈tn〉 + tg ≈ 〈tn〉.

For large systems, Ro � L, many stochastically nucleated and growing invader clusters contribute to the
extinction of the resident (MC invasion). In the limit of L → ∞, the invasion process becomes self averaging:
Pnot(t) approaches a step function (centered at a system-size independent lifetime 〈τ〉) and the global densities
approach deterministic functions. In this limit, Rc � Ro � L, in two dimensions, the density of the resident
species is given by KJMA theory11–13 or Avrami’s law

ρ1(t) = ρ∗1 e− ln(2)(t/〈τ〉)3 . (3)

The scaling behavior of the self-averaging, system-size independent lifetime τ≡〈τ〉 in two dimensions can be
argued as follows.17, 19 The average diameter of the invading clusters at time t=τ scales as vτ , and can also
be seen as the average spatial separation between such clusters, thus Ro ∼ vτ . Further, at the same instant,
on average, one cluster has been nucleated in a corresponding area of diameter Ro, thus IR2

oτ ∼ 1. Hence, one
obtains

τ ∼ (Iv2)−1/3 , (4)

and

Ro ∼
(v

I

)1/3

(5)

for the characteristic time and length scales of the system in the limit of L → ∞. Also note that Eqs. (4) and
(5) are also the only time and length scales that can be constructed by dimensional analysis in the MC regime.
Further, as can be seen from Eq. (4), the microscopic parameters of a specific model (the local rates β, αi, µ,
and δ in our ecological model) govern the characteristic time scale (the lifetime τ) through their impact on both
the nucleation rate per unit area I and the radial growth velocity v.

5. RESULTS AND DISCUSSION

While local introduction is a Poisson process, lacking a Hamiltonian or an effective free energy for the model, it
is not known a priori whether the nucleation of a “supercritical” cluster will also be Poisson. To this end, in the
SC regime, we constructed cumulative probability distributions for the lifetime of the resident species Pnot(t),
i.e., the probability that the global density of the resident has not crossed below ρ∗1/2. We found that these
distributions are indeed exponentials in accordance with Eq. (2) (indicating that the nucleation of a successful
invading cluster is a Poisson process). We show results for a fixed (sufficiently small) system size for three
introduction rates in Fig. 5(a). From the slopes of the exponentials we obtained the average nucleation times
[Fig. 5(b)], hence the β-dependence of the nucleation rate per unit area I(β). Since 〈tn〉 = [L2I(β)]−1, we
conclude that I(β) ∼ 〈tn〉−1 ∼ β. In the SC regime, the invasive spread is inherently stochastic; it is initiated
and completed by the first randomly nucleated successful cluster of the invasive species. For very low values of
β, the lifetime is dominated by the very large average nucleation times, hence

〈τ〉 = 〈tn〉 + tg ≈ 〈tn〉 ∼ β−1 , (6)

as can also be seen in Fig. 5(b).

In the MC regime we applied Avrami’s law, Eq. (3), to approximate the functional form of the time-dependent
global density of the resident species. Our results in Fig. 6(a) show that it is, indeed, a very good approximation
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Figure 5. (a) Cumulative probability distributions Pnot(t) on log-linear scales for L=64, α1=0.70, α2=0.80, and µ=0.10
for three different values of β (in increasing order from the top). (b) Average nucleation time and average lifetime (in
units of MCSS) vs. the introduction rate on log-log scales for the same L, α1, α2, and µ as in (a). The straight solid line
corresponds to a slope −1, indicating 〈tn〉 ∼ β−1 in the SC regime.
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Figure 6. (a) Time-dependent global density of the resident species ρ1(t) in the MC regime for L=1, 000, α1=0.70,
α2=0.80, and µ=0.10, for three different values of the introduction rate β (in increasing order from the top). The solid
curves represent Avrami’s law, Eq. (3), using the measured lifetime 〈τ 〉 as the only parameter. The inset shows ρ1(t)
vs. (t/〈τ 〉)3 on log-linear scales. (b) Average lifetime (in units of MCSS) vs. the introduction rate rate on log-log scales
for the same α1, α2, and µ as in (a). The straight solid line (across the L=1000 system data points) is the best fit
power-law indicating 〈τ 〉 ∼ β−0.30 in the MC regime. The straight dashed line corresponds to a slope −1, indicating the
β-dependence of the average lifetime in the SC regime, Eq. (6). For comparison, we show the lifetime of the mean-field
(MF) model, obtained by numerically integrating the mean-field rate equations defined by the rates in Eq. (1).

for times t ≤ 〈τ〉. Assuming that the spreading velocity of the invading clusters is constant and using our results
from the SC regime that I(β) ∼ β, KJMA theory Eq. (4) predicts that

〈τ〉 ∼ [I(β)]−1/3 ∼ β−1/3 (7)

in the MC regime. The measured exponent, −0.30, is not too far off [Fig. 6(b)], but it indicates that the
assumption of a constant spreading velocity (possibly as a result of the nontrivial surface properties of the

122     Proc. of SPIE Vol. 5841



0 1000 2000 3000 4000
t

0

0.2

0.4

0.6

0.8

1

ρ1(t)

nn. (δ=4, L=10
3
)

nnn. (δ=8, L=10
3
)

MF (δ=L= ∞)

0 1x10
9

2x10
9

3x10
9

4x10
9

5x10
9

t
3

10
−2

10
−1

10
0

(a)

10
−6

10
−5

10
−4

β

10
3

10
4

<τ> nn. (δ=4, L=10
3
)

nnn. (δ=8, L=10
3
)

MF (δ=L= ∞)

(b)

Figure 7. (a) Comparison of the global time-dependent density of the resident species ρ1(t) in the MC regime with
nearest-neighbor (δ = 4) and next-nearest-neighbor (δ = 8) colonization. In both cases β= 10−4, L=1, 000, α1=0.70,
α2=0.80, and µ=0.10. The solid curves represent Avrami’s law, Eq. (3), using the measured lifetime 〈τ 〉 as the only
parameter. For comparison, the mean-field (MF) time-dependent density for these rates is also shown. The inset shows
ρ1(t) vs. t3 on log-linear scales. (b) Average lifetime (in units of MCSS) vs. the introduction rate rate on log-log scales
for nearest-neighbor and next-nearest-neighbor colonization in the MC regime for the same α1, α2, and µ as in (a). The
straight solid lines (across the L=1000 system data points) are the best fit power-laws, indicating 〈τ 〉 ∼ β−0.30 for both
cases.

clusters) may break down.

To study the robustness of the KJMA-type nucleation in our ecological model, we implemented additional
simulations with next-nearest-neighbor colonization (δ = 8). The corresponding global densities are qualitatively
similar to the nearest-neighbor case (δ = 4); the shape of the resident’s decaying density is still well approximated
by Eq. (3) up to the lifetime when effects of coalescing clusters become important [Fig. 7(a)]. Further, the lifetime
〈τ〉 exhibits the same scaling with the introduction rate 〈τ〉 ∼ β−0.30 [Fig. 7(b)]. The neighborhood size seems
to directly affect the radial growth velocity, and through it, the actual value of the lifetime.

6. SUMMARY AND OUTLOOK

We studied invasive spread in a two-species ecological model with preemptive competition, assuming that intro-
duction of the favored species is a rare stochastic process. We found that nucleation theory, in particular Avrami’s
law, describes this phenomenon very well. Figure 6(b) essentially summarizes our findings. For infinitely large
systems and sufficiently small β (β < 10−3 for our choice of the other parameter values) the system exhibits MC
invasion and is well approximated by Avrami’s law. The lifetime is self-averaging and scales as 〈τ〉 ∼ β−0.30.
For larger β, due to the almost immediate coalescing of the clusters, nucleation theory breaks down; in fact
the mean-field approximation begins to work much better as a result of the almost immediate mixing of small
clusters. For any finite system, however, there is a sufficiently small value of β such that Ro>L and the invasion
crosses over to SC mode. For example, for L=128 this crossover occurs at around β = 10−6, while for L=256
at around β = 10−7. For β less than these values, the invasion is inherently stochastic and the average lifetime
scales as 〈τ〉 ∼ β−1, reflecting the underlying Poisson process for nucleating a successful invading cluster.

Further analyses of the spatially structured dynamics of ecological rarity should advance our understanding
of exotic invasions, and also contribute to basic knowledge in evolutionary biology and epidemiology. Systematic
studies of the critical cluster size and the cluster-size dependence of the spreading velocity are under way. The
structure of the spreading clusters, in particular, the roughness of their surface, is expected to play an important
role in the latter.
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