1a. Original: In recent years, many strides in identifying Alzheimer’s disease have been made in psychiatric medicine. Not too long ago, senility in an older patient who seemed to be losing touch with reality was often confused with Alzheimer’s. In the past few years, however, blood chemistry and genetic clues have become tools to diagnose this condition. There is the risk of human tragedy of another kind, however, as a result of the increasing accuracy of these procedures: Long before the appearance of any of its overt symptoms, physicians may be able to predict Alzheimer’s. At that point, an otherwise apparently healthy person could be devastated by such an early and accurate diagnosis.

1b. Revision: In recent years, psychiatric medicine has made strides in identifying Alzheimer’s disease. Not too long ago, when a physician examined an older patient who seemed out of touch with reality, she had to guess whether that person had Alzheimer’s or was senile, an entirely different syndrome. In the past few years, however, new and more reliable tests have focused on blood chemistry and genetic clues. In the accuracy of these new tests, however, lies the risk of human tragedy of another kind: Physicians may be able to predict Alzheimer’s long before its overt appearance, but such an early and accurate diagnosis could psychologically devastate an otherwise healthy person.

2a. Original: Vegetation covers the earth, except for those areas continuously covered with ice or utterly scorched by continual heat. Richly fertilized plains and river valleys are places where plants grow most richly, but also at the edge of perpetual snow in high mountains. The ocean and its edges as well as in and around lakes and swamps are densely vegetated. The cracks of busy city sidewalks have plants in them as well as in seemingly barren cliffs. Before humans existed, the earth was covered with vegetation, and the earth will have vegetation long after evolutionary history swallows us up.

2b. Revision 1: Vegetation covers the earth, except for areas covered in ice or areas scorched by heat. Vegetation prospers best in richly fertilized valleys and at the edge of perpetual snow in high mountains. But densely vegetated areas also appear in and around ocean, lakes, and swamps. Other more sparsely vegetated areas include the cracks of busy city sidewalks and seemingly barren cliffs. Vegetation covered the earth long before humans existed and will continue to have vegetation long after evolutionary history swallows humans up.

2c. Revision 2: Before humans existed, vegetation covered the earth, and vegetation has continued to cover the earth, thriving in diverse types of locations. Plants grow everywhere except in areas continuously covered with ice or utterly scorched by continual heat. For instance, they grow abundantly in fertilized plains and river valleys and at the edge of perpetual snow in high mountains. Vegetation [Plants?] also grows in aquatic regions such as the ocean and its edges and in and around lakes and swamps. Plants [They?] can also be found in unlikely locations such as the cracks of busy city sidewalks and seemingly barren cliffs.
3a. Original: The power to create and communicate a new message to fit a new experience is not a competence animals have in their natural states. Their genetic code limits the number and kind of messages that they can communicate. Information about distance, direction, source, and richness of pollen in flowers constitutes the only information that can be communicated by bees, for example. A limited repertoire of messages delivered in the same way, for generation after generation, is characteristic of animals of the same species, in all significant respects.

3b. Revision 1: Animals do not have the power in their natural states to communicate a new message to fit a new experience. Animals are restricted by their genetic code in their ability to communicate messages. Bees, for example can only communicate information about distance, direction, source, and richness of pollen in flowers. Animals of the same species have a limited repertoire of messages that can be delivered, a characteristic that lives through generations.

3c. Revision 2: Animals of the same species have been communicating messages with a fixed vocabulary for generations. Their genetic code limits the number and kind of messages that they can communicate, which prevents them from creating new messages to fit new experiences. For example, bees can only communicate information about distance, direction, source, and richness of pollen in flowers.

4a. Original: The importance of language skills in children’s problem-solving ability was stressed by Jones in his paper on children’s thinking. Improvement in nonverbal problem solving occurred as a result of improvements in language skills. The use of previously acquired language habits for problem articulation and activation of knowledge previously learned through language was the cause of better performance. Therefore, systematic practice in the verbal formulation of nonlinguistic problems prior to attempts at their solution might be an avenue for exploration in the enhancement of problem solving in general.

4b. Revision: Jones believes that children’s verbal and nonverbal problem-solving ability is directly correlated to their language skills. He found that the cause of better performance was due to language habits such as strong problem articulation and activation of prior verbally learned knowledge. His findings suggest that children may obtain better solutions by enhancing their problem solving aptitude by practicing verbal formulation of nonlinguistic problems.

5. Some potential threats exist in the modern mass communications media, though there are many significant advantages. If a powerful minority should happen to control it, public opinion could be manipulated through biased reporting. And while a wide knowledge of public affairs is a great advantage that results from national coverage, divisiveness and factionalism can be accentuated by connecting otherwise isolated, local conflicts into a single larger conflict as a result of showing that conflicts about the same issues are occurring in different places. It will always be true, of course, that human nature produces differences of opinion, but the threat of faction and division may be reinforced when national coverage publicizes uninformed opinions. According to some, education can suppress faction when the
true nature of conflicts reaches the public through the media, but history has shown that as much coverage is given to people who encourage conflict as to people who try to remove conflict.

6a. Original: Some sort of palace revolt or popular revolution plagued seven out of eight reigns of the Romanov line after Peter the Great. In 1722, achievement by merit was made the basis of succession when the principle of heredity was terminated by Peter. This resulted in many tsars not appointing a successor before dying, including Peter. Ivan VI was less than two months old when appointed by Czarina Anna, but Elizabeth, daughter of Peter the Great, defeated Anna and ascended to the throne in 1741. Succession not dependent upon authority resulted in the boyars’ regularly disputing who was to become sovereign. Male primogeniture became the law in 1797 when Paul I codified the law of succession. But conspirators strangled him, one of whom was probably his son, Alexander I.

6b. Revision: Nearly all of the Russian Czars of the eighteenth century experienced revolt or revolution during their reign. The trouble began in 1722, when Peter the Great abolished the principle of hereditary succession and established succession based on merit. This radical alteration of tradition allowed Czarina Anna to appoint Ivan VI, who was merely two months old. However, Elizabeth, Peter’s daughter, was able to defeat Anna and ascended to the throne in 1741. This contentious battle over succession was the first occurrence of regular disputes over succession after Peter’s change in the law. Eventually, in 1797, Paul I reversed Peter’s decision and made male primogeniture the law. Paul was later strangled by a group of conspirators, who may have been assisted by Alexander I, Paul’s son.

7a. Original: Many issues other than science, domestic politics in particular, faced Truman when he was considering the Oppenheimer committee’s recommendation to stop the hydrogen bomb project. A Sino-Soviet bloc had been proclaimed by Russia and China, so the Cold War was becoming an issue. Support for Truman’s foreign policy was shrinking among Republican leaders in Congress. And the first Russian atom bomb test made the public demand a strong response from him. Truman’s conclusion that he could not afford letting the public think that Russia had been allowed to be first in developing the most powerful weapon yet was inevitable. In retrospect, the risk in the Oppenheimer recommendation was worth taking according to some historians, but the political issues that Truman had to face were too powerful to ignore.

7b. Revision: President Harry S. Truman did not face scientific issues only when considering the Oppenheimer committee’s recommendation to stop the hydrogen bomb project. He also confronted political issues including the onset of the Cold War, public pressure for a response to the first Russian atom bomb test, and shrinking Republican support in Congress for his foreign policy. Truman concluded that he could not afford to let the public believe that the U.S. allowed Russia to develop the most powerful weapon of the time. Some historians believe that the risk the Oppenheimer recommendation presented was worth taking, but Truman also had to face these political issues that were too powerful to ignore.