1. Consider the quadrature formula
\[\int_0^h f(x) \, dx = \alpha_1 f(0) + \alpha_2 f(h/3) + \alpha_3 f(h) + E(h), \quad h = \text{constant} \]
(a) Find the interpolating polynomial \(\tilde{f}(x) \) of degree two (or less) that fits the data \((0, f(0)), (h/3, f(h/3))\) and \((h, f(h))\). Write the polynomial in terms of the Lagrange basis.
(b) Integrate the interpolating polynomial in part (a) to obtain the weights \((\alpha_1, \alpha_2, \alpha_3)\) in the numerical quadrature formula.

2. Consider the numerical quadrature formula
\[\int_0^h f(x) \, dx = \alpha_1 f(0) + \alpha_2 f(2h/3) + E(h), \quad h = \text{constant} \]
(a) Find the weights \((\alpha_1, \alpha_2)\) so that \(E = 0 \) when \(f(x) = 1 \) and \(f(x) = x \), i.e. when \(f(x) \) is a polynomial of degree 1 or less.
(b) The error term has the form \(E = Kh^{p+2}f^{(p+1)}(c) \), where \(c \in [0, h] \). Consider monomials \(f(x) = x^2, x^3, \) etc., to find the positive integer \(p \) and the constant \(K \) in the error term.

3. Consider the integrals
\[I_a = \int_{-1}^1 xe^{-2x} \, dx, \quad I_b = \int_{-2}^1 \frac{5x \, dx}{\sqrt{2 + 3x^2}}, \quad I_c = \int_{-1}^1 x \sin(x + 2) \, dx, \quad I_d = \int_1^3 x \ln(x^3) \, dx \]
Approximate \(I_a \) and \(I_b \) using 2-point Gaussian quadrature formulas, and approximate \(I_c \) and \(I_d \) using 3-point Gaussian quadrature formulas. (Use a change of variables for \(I_b \) and \(I_d \) following text exercise 4 on page 278.) Compare the approximate value of the integral with the exact value for each case.

4. The composite trapezoidal rule for \(m \) equally spaced subintervals is
\[\int_a^b f(x) \, dx = \frac{h}{2} \left(f(a) + \sum_{j=1}^{m-1} f(x_j) + f(b) \right) - \frac{(b - a)h^2}{12} f''(c), \quad c \in [a, b] \]
where \(h = (b - a)/m \). Let \(f(x) = x/(x + 1) \), \(a = -1/2 \) and \(b = 2 \). Consider the error term in the composite trapezoidal rule above to determine the number of subintervals needed so that the absolute error in the numerical quadrature is less than \(10^{-4} \).

5. Let \(I = \int_a^b f(x) \, dx \).
(a) Write a matlab function, \texttt{mySimpson} say, that outputs an approximation for \(I \) using the composite Simpson rule with \(m \) equally spaced subintervals. Your function should take input \(a, b, m \) and the function \(f \) (specified in an M-file).
(b) Let \(I = \int_{-1}^{1} \exp(-x) \sin(5x) \, dx \). Find approximations to \(I \) using your matlab function in part (a) with \(m = 10, 20 \) and \(40 \). Compute the exact value for \(I \) (using Maple if you have to) and use it to find the absolute error in each approximation.