1. Find and sketch the domain of \(f(x, y) = \ln(9 - x^2 - 9y^2) \)

Section 14.1, P.747 29, 31
Section 14.3, P.764 14, 17, 25, 29, 34, 57, 60

2. Compute \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) if \(f(x, y) = \int_x^y g(t) \, dt \)

3. Show that \(u(x, y) = \arctan \left(\frac{y}{x} \right) \) satisfies Laplace's equation \(u_{xx} + u_{yy} = 0 \)

Section 14.4, P.772 3, 8

4. Use linear approximation to estimate \(f(1.95, 1.08) \)
 if \(f(x, y) = \sqrt{20 - x^2 - 7y^2} \)

5. Suppose a function \(z = f(x, y) \) is defined implicitly by the equation \(x^2 + y^2 + z^2 = 3xyz \). Compute the partial derivatives \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \) in two ways:
 a) Using standard implicit differentiation
 b) By considering the total differential of \(F(x, y, z) = x^2 + y^2 + z^2 - 3xyz \)

Section 14.6, P.792 5, 7, 13, 15

6. Compute \(\frac{dw}{dt} \bigg|_{t=\pi} \) if \(w = x^2 + y^2 \), \(x = \cos t \), \(y = \sin t \)

Section 14.5, P.784 5, 7, 21, 27, 31, 45

7. Find an equation for the path of a particle that starts at \(P(10, 10) \) and always moves in the direction of maximum temperature increase if \(T(x, y) = 400 - 2x^2 - y^2 \).

8. Show that the equation of the tangent plane to the ellipsoid \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \) at the point \((x_0, y_0, z_0)\) can be written as:
 \[\frac{x - x_0}{a^2} + \frac{y - y_0}{b^2} + \frac{z - z_0}{c^2} = 1. \]

Section 14.7, P.805 7, 13, 43, 48, 50, 52