Calculus I Announcements

- Read sections 3.8, 3.9
- Do the homework on the study guide for
 - All of section 3.8.
 - Section 3.9: 1, 3, 5, 7, 11, 17, 21, 25, 27, 29
- Exam 2 is in two weeks (October 22nd)
- The Next Lecture is on Tuesday, October 14th (Tuesday follows a Monday schedule)
Implicit Differentiation

Frequently it happens that we get an equation involving two variables, both y and x and we would like to find $\frac{dy}{dx}$ without being able to solve for y. The process that we use to do this is called implicit differentiation.

The following examples show how we differentiate an expression (one side of an equality) “implicitly” if y is known to be a function of x.

- $\frac{d}{dx}(y + 5) = \frac{dy}{dx}$
- $\frac{d}{dx}(y^2 + x^2) = 2y\frac{dy}{dx} + 2x$
- $\frac{d}{dx}(y \sin(x)) = y \cos(x) + \sin(x)\frac{dy}{dx}$

Suppose y is a function of x, and perform implicit differentiation on the following expressions.

1. $\frac{d}{dx}(xe^y + x^2)$
2. $\frac{d}{dx} x^3 y^2$
3. $\frac{d}{dx} \sin(y)x^2$
Slide 3 iClicker

Question Suppose y is a function of x and find $\frac{d}{dx}yx$

A. $\frac{dy}{dx}$
B. $x\frac{dy}{dx} + xy$
C. $x\frac{dy}{dx} + y$
D. $x\frac{dy}{dx} + x$
E. None of the above
Answer to Question Suppose y is a function of x and find $\frac{dy}{dx}yx$

A. $\frac{dy}{dx}$

B. $x\frac{dy}{dx} + xy$

C. $x\frac{dy}{dx} + y$ is the correct answer.

D. $x\frac{dy}{dx} + x$

E. None of the above
Question Suppose y is a function of x and find
\[
\frac{d}{dx} x \cos(y) + \ln(y)
\]

A. $\cos(y) + \frac{1}{y}$

B. $- \sin(y) \frac{dy}{dx} + \frac{1}{y} \frac{dy}{dx}$

C. $\cos(y) - x \sin(y) \frac{dy}{dx} + \frac{1}{y} \frac{dy}{dx}$

D. $\cos(y) \frac{dy}{dx} - x \sin(y) + \frac{1}{y} \frac{dy}{dx}$

E. None of the above
Answer to Question Suppose y is a function of x and find $\frac{d}{dx}x \cos(y) + \ln(y)$

A. $\cos(y) + \frac{1}{y}$

B. $-\sin(y)\frac{dy}{dx} + \frac{1}{y \frac{dy}{dx}}$

C. $\cos(y) - x \sin(y)\frac{dy}{dx} + \frac{1}{y \frac{dy}{dx}}$ is the correct answer.

D. $\cos(y)\frac{dy}{dx} - x \sin(y) + \frac{1}{y \frac{dy}{dx}}$

E. None of the above
There are two ways we can express y as a function of x.

- **Explicitly** In this case y is written explicitly as a function of x as in $y = x^3 + \sin(x)$.

- **Implicitly** In this case we have y and x related by an equation that we may not be able to easily solve for y.
 - For example $x^3 + y^3 = 6xy$ is a relation between x and y that gives y as a function of x implicitly.
 - But we can still think of y as a function of x on certain pieces
Implicit Functions Graphically

Make a graph of the folium of Descartes, $x^3 + y^3 = 6xy$.

1. Show that the graph passes through the point with coordinates $(3, 3)$.
2. Describe how the graph is related to the equation?
3. On which pieces is y a function of x?
4. What does dy/dx mean in terms of the graph?
The Implicit Differentiation Process

The implicit differentiation process is as follows.

- Suppose we know y is a function of x but we only have an implicit equation.
- Applying the operator $\frac{d}{dx}$ to both sides of the equality results in a new expression which contains $\frac{dy}{dx}$.
- We then solve the equation for $\frac{dy}{dx}$.

Examples Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y

1. $x^2 + y^2 = 25$
2. $x^3 + y^3 = 6xy$
Implicit differentiation can be used to find tangent lines and normal lines:

- The **tangent line** at a point on a graph is the line through the point and with slope equal to dy/dx.
- The **normal line** at a point on a graph is the line through the point and with slope perpendicular to dy/dx.
- Recall that if m is the slope, the perpendicular slope is $-1/m$.

Try the following:

1. Find the tangent line to $x^3 + y^3 = 6xy$ at the point $(3, 3)$.
2. Find the normal line to $x^3 + y^3 = 6xy$ at the point $(3, 3)$.

iClicker

Question Find the tangent line to $x^2 + y^2 = 25$ at the point $(3, 4)$ by using implicit differentiation

A. $y = \frac{4}{3}(x - 3) + 4$

B. $y = \frac{3}{4}(x - 3) + 4$

C. $y = -\frac{3}{4}(x - 3) + 4$

D. $y = -\frac{4}{3}(x - 3) + 4$

E. None of the above
Answer to Question Find the tangent line to $x^2 + y^2 = 25$ at the point $(3,4)$ by using implicit differentiation

A. $y = \frac{4}{3}(x - 3) + 4$

B. $y = \frac{3}{4}(x - 3) + 4$

C. $y = -\frac{3}{4}(x - 3) + 4$ **is the correct answer.**

D. $y = -\frac{4}{3}(x - 3) + 4$

E. None of the above
Implicit Differentiation

Question Find the normal line to $x^2 + y^2 = 25$ at the point $(3, 4)$ by using implicit differentiation

A. $y = \frac{4}{3}(x - 3) + 4$

B. $y = \frac{3}{4}(x - 3) + 4$

C. $y = -\frac{3}{4}(x - 3) + 4$

D. $y = -\frac{4}{3}(x - 3) + 4$

E. None of the above
Answer to Question Find the normal line to $x^2 + y^2 = 25$ at the point $(3, 4)$ by using implicit differentiation

A. $y = \frac{4}{3}(x - 3) + 4$ **is the correct answer.**

B. $y = \frac{3}{4}(x - 3) + 4$

C. $y = \frac{-3}{4}(x - 3) + 4$

D. $y = \frac{-4}{3}(x - 3) + 4$

E. None of the above
Finding y'' implicitly

Example Suppose $x^3 + y^3 = 54$ gives y implicitly as a function of x. Find y'' by implicit differentiation.

The steps to do this are:

1. Find y'
2. Differentiate y' to find y''
3. Substitute the result of item 1 into the result of item 2 and simplify.
4. In some cases, use the original equation to simplify further.
Derivatives of Inverses

• If we know the derivative of a function, we can find the derivative of its inverse by using the chain rule

• Show how to use this technique to derive the formula

\[
\frac{d}{dx} \ln(x) = \frac{1}{x}
\]

by using the knowledge that \(^1\)

\[e^{\ln(x)} = x\quad \text{and} \quad \frac{d}{dx} e^x = e^x\]

• Show how to use this technique to find

\[
\frac{d}{dx} \arcsin(x)
\]

by using the knowledge that \(^2\)

\[\sin(\arcsin(x)) = x\quad \text{and} \quad \frac{d}{dx} \sin(x) = \cos(x)\]

\(^1\) for \(x > 0\)

\(^2\) for \(-1 \leq x \leq 1\)
Derivatives of Inverse Functions

Now, to get a general formula for the derivative an inverse,

We derive the formula for

\[
\frac{d}{dx} f^{-1}(x)
\]
in terms of \(f'(x) \).

- We know that \(f \left(f^{-1}(x) \right) = x \) for all \(x \) in the domain of \(f^{-1} \)
- Differentiating both sides and using the chain rule on the left we get

\[
f' \left(f^{-1}(x) \right) \frac{d}{dx} f^{-1}(x) = 1\]

- We want \(\frac{d}{dx} f^{-1}(x) \) so we solve for it to get

\[
\frac{d}{dx} f^{-1}(x) = \frac{1}{f' \left(f^{-1}(x) \right)}
\]

Use this formula to derive the formula for the derivative of arctan(x) using the knowledge that \(\frac{d}{dx} \tan(x) = \sec^2(x) \).
Using techniques such as this, we can get derivatives of all the inverse trigonometric functions:

1. \(\frac{d}{dx} \arcsin(x) = \frac{d}{dx} \sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}} \)
2. \(\frac{d}{dx} \arccos(x) = \frac{d}{dx} \cos^{-1}(x) = \frac{-1}{\sqrt{1-x^2}} \)
3. \(\frac{d}{dx} \arctan(x) = \frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2} \)
4. \(\frac{d}{dx} \arccot(x) = \frac{d}{dx} \cot^{-1}(x) = \frac{-1}{1+x^2} \)
5. \(\frac{d}{dx} \arcsec(x) = \frac{d}{dx} \sec^{-1}(x) = \frac{1}{|x|\sqrt{x^2-1}} \)
6. \(\frac{d}{dx} \arccsc(x) = \frac{d}{dx} \csc^{-1}(x) = \frac{-1}{|x|\sqrt{x^2-1}} \)

- Memorize formulas 1-4 for the exam.
Consider deriving the rule \(\frac{d}{dx} a^x = a^x \ln(a) \)
(where \(a > 0 \) is a constant).

- Use the definition of the derivative to show that
 \[
 \frac{d}{dx} a^x = a^x \cdot \lim_{h \to 0} \frac{a^h - 1}{h} = m(a)a^x
 \]
 where
 \[
 m(a) = \lim_{h \to 0} \frac{a^h - 1}{h}
 \]

- Define the number \(e \) to be the number so that
 \[
 m(e) = \lim_{h \to 0} \frac{e^h - 1}{h} = 1
 \]
 which means that \(\frac{d}{dx} e^x = e^x \)

- Show that \(\frac{d}{dx} e^x = e^x \) is a special case of the general rule \(\frac{d}{dx} a^x = a^x \ln(a) \).

- Use implicit differentiation to derive the rule
 \[
 \frac{d}{dx} a^x = a^x \ln(a)
 \]
 from the knowledge that
 \[
 \frac{d}{dx} \ln(x) = \frac{1}{x}
 \]