Calculus I Announcements

- Find the course web page by searching on “RPI piper calculus”
- So far, you should have completed the problems from sections 1.1-1.6.
- Next, read sections 2.1, 2.2 and 2.3 and work the associated homework problems.
- Exam 1 is in 2 weeks
- You need to do ALL the homework problems from the course web page for the sections we cover in class.
The Limit of Secant Lines (2.1)

- The difference quotient is
 \[\frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{f(t) - f(a)}{t - a}, \text{ for } t \neq a \]

- The difference quotient is the formula to get the average rate of change.

- The difference quotient is also the formula to get the slope of the secant line.

- The derivative is the limit of the difference quotient, so it is the instantaneous rate of change.

- In symbols:
 \[f'(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a} = \lim_{t \to a} \text{ Slope of Secant Line} = \text{Slope of the Tangent Line} \]
The Limit of Secant Lines (2.1)

In pictures with t approaching a from the right this looks like:

$$f'(a) = \lim_{t \to a^+} \frac{f(t) - f(a)}{t - a} = \lim_{t \to a^+} \text{Slope of Right Secant Line}$$

= Slope of the Tangent Line
...and with \(t \) approaching \(a \) from the left this looks like:

\[
f'(a) = \lim_{t \to a^-} \frac{f(t) - f(a)}{t - a} = \lim_{t \to a^-} \text{Slope of Left Secant Line} = \text{Slope of the Tangent Line}
\]
The Tangent Line as a Limit (2.1)

- A secant line to the graph of f is a line between two points on a graph.
- A tangent line to the graph of f at a point is (intuitively) the line that just “kisses” the curve at the given point.
- The tangent line is determined as the limit of secant lines.
- The slope of the tangent line is determined as the limit of slopes of the secant lines...

 The Slope of the Tangent Line is: \[\lim_{t \to a} \frac{f(t) - f(a)}{t - a} \]

- The slope of the tangent line is equal to the derivative of the function f at that point...

 The Derivative of f is: \[f'(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a} \]
Question What are the average rates of change of
$f(x) = 3x + 2$ over the intervals $[1, 1.1], [1, 1.01], [1, 1.001]$?

A. 0, 0, 0
B. 3, .3, .03
C. 5, .5, .05
D. 3, 3, 3
E. None of the above
Answer to Question What are the average rates of change of $f(x) = 3x + 2$ over the intervals
$[1, 1.1],[1, 1.01],[1, 1.001]$?

A. 0, 0, 0
B. 3, .3, .03
C. 5, .5, .05
D. 3, 3, 3 is the correct answer.
E. None of the above
Slide 7 iClicker

Question What is the slope of the tangent line to $f(x) = 3x + 2$ at $x = 1$?

A. 3
B. 5
C. 2
D. 1
E. None of the above
Answer to Question What is the slope of the tangent line to \(f(x) = 3x + 2 \) at \(x = 1 \)?

A. 3 is the correct answer.
B. 5
C. 2
D. 1
E. None of the above
Slide 8 **Finding Slopes of Other Functions**

Consider finding the slope of the tangent line to $f(x) = \sin(x)$ at $x = 0$?

- How would this task be formulated?
- What problems would be faced in carrying this out?
- How could these problems be overcome?

The resolution of these types of questions is what led to the formal definition of a derivative which is based on the concept of limit.

The key idea, is that we want to carefully consider what happens to the difference quotient as x gets close 0, but $x \neq 0$.

Chapter 2 is about taking limits.

We will use the notation:

$$\lim_{x \to c} f(x)$$

When reading this aloud, one says

the limit as x goes to the number c of f of x.
Slide 10 Description of Limits (2.2)

- We write that the limit as \(x \) goes to \(c \) of \(f(x) \) is equal to \(L \) as

\[
\lim_{x \to c} f(x) = L
\]

- A good description for understanding what a limit means is: by taking \(x \) closer and closer to \(c \), but with \(x \neq c \), all the values of \(f(x) \) get closer and closer to \(L \), (or equal to \(L \)).

- Definition \(\lim_{x \to a} f(x) = L \) means that \(|f(x) - L| \) can be made arbitrarily small by taking \(x \) sufficiently close to \(c \), but not equal to, \(c \).

1. Explain how the description relates to the definition
2. Use the description and the definition to find \(\lim_{x \to 2} x^2 \)
3. Use the description and the definition to discuss

\[
\lim_{x \to 0} \sin \left(\frac{1}{x} \right)
\]

Technical Note: Whenever we write \(\lim_{x \to c} f(x) = L \) we assume \(f \) is defined in an open interval containing \(c \), except possibly at \(c \) itself.
Techniques for Finding Limits (2.2)

We used the definition of limits for investigating the limits on the previous page.
We now proceed to develop a set of general algebraic techniques that begin to formalize this process:

Here are some simple rules about limits that follow from the definition:

1. \(\lim_{x \to a} C = C \) where \(C \) is constant.
2. \(\lim_{x \to a} x = a \)
3. \(\lim_{x \to a} x^r = a^r \) where \(r \) is positive.
4. \(\lim_{x \to a} P(x) = P(a) \) if \(P \) is a polynomial
5. \(\lim_{x \to a} \sqrt{x} = \sqrt{a} \) for \(a \geq 0 \).
6. \(\lim_{x \to a} \ln(x) = \ln(a) \) for \(a > 0 \).
7. \(\lim_{x \to a} e^x = e^a \)
8. \(\lim_{x \to a} c^x = c^a \) for a constant \(c > 0 \).
9. \(\lim_{x \to a} \sin(x) = \sin(a) \) and similarly for cosine.
10. \(\lim_{x \to a} \tan(x) = \tan(a) \) as long as \(\tan(a) \) is defined (not infinity). Similarly for other trig functions.

Find the limits using the above rules:

\[
\begin{align*}
\lim_{x \to 3} x^3 + 4x & \quad \lim_{x \to \pi/6} \cos(x) & \quad \lim_{x \to 4} x^{1/5}
\end{align*}
\]
Limits: More Rules

If \(f \) and \(g \) are functions and \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \) for real numbers \(L \) and \(M \) then the rules below may be proved using the definition and are used to find limits

1. \(\lim_{x \to a} (f(x) + g(x)) = L + M \)
2. \(\lim_{x \to a} (f(x) \cdot g(x)) = L \cdot M \)
3. \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \) provided that \(M \neq 0 \).
4. \(\lim_{x \to a} (f(x))^r = L^r \) for any positive number \(r \)
5. \(\lim_{x \to a} \sin(f(x)) = \sin(L) \) and similarly for other trig functions with \(L \) is in their domain.
6. \(\lim_{x \to a} c^{f(x)} = c^L \) for \(c > 0 \)

Find the limits using the rules

\[
\lim_{x \to \pi/6} x^2 + 5x \sin(x) \quad \lim_{x \to 2} \frac{e^x + 3}{x + 4} \quad \lim_{x \to 5} \sqrt{\sin(x) + \sin(x^2) + 9\tan(x)}
\]
Limits from Graphs

- One can also figure out limits from simple graphs. The concept here, is given a graph, can we find the limit.

- On a graph, an “open circle” means that the function does **not** pass through the corresponding point.

- The idea is to look at what the function “should be” at the given point.

Draw a graph and try to find the limits from the graph.
One Sided Limits

Sometimes it is useful to find the limit from only one side.

- For the right hand limit only consider $x > c$

 Notationally: \(\lim_{x \to c^+} f(x) \)

- For the left hand limit only consider $x < c$

 Notationally: \(\lim_{x \to c^-} f(x) \)

Draw some graphical examples. Illustrate what left and right hand limits are if you are given a graph.

Fact: If

\[
\lim_{x \to c^-} f(x) = L \quad \text{and} \quad \lim_{x \to c^+} f(x) = L
\]

then

\[
\lim_{x \to c} f(x) = L
\]
Slide 15 **Piecewise Functions**

The rules for finding limits, do not apply to piecewise functions, so we have to find limits using the description. Given the function,

$$f(x) = \begin{cases}
 x & \text{if } x < 2 \\
 5 & \text{if } x = 2 \\
 3 - x & \text{if } 2 < x < 3
\end{cases}$$

determine if the following limits exist and if so, find their values

1. \(\lim_{x \to 2^-} f(x) \)
2. \(\lim_{x \to 2^+} f(x) \)
3. \(\lim_{x \to 2} f(x) \)
4. \(f(2) \)
Question For the function,
\[f(x) = \begin{cases}
\sin(x) & \text{if } x \leq 0 \\
x & \text{if } 0 < x < 1 \\
x^2 + 1, & \text{if } 1 \leq x
\end{cases} \]
which (if any) of the following is false.

A. \(\lim_{x \to 0^+} f(x) = 0 \)

B. \(\lim_{x \to 0} f(x) = 0 \)

C. \(\lim_{x \to 1^-} f(x) = 1 \)

D. \(\lim_{x \to 1} f(x) = 1 \)

E. All the above are true
Answer to Question For the function,

\[f(x) = \begin{cases}
 \sin(x) & \text{if } x \leq 0 \\
 x & \text{if } 0 < x < 1 \\
 x^2 + 1, & \text{if } 1 \leq x
\end{cases} \]

which (if any) of the following is false.

A. \(\lim_{x \to 0^+} f(x) = 0 \)

B. \(\lim_{x \to 0} f(x) = 0 \)

C. \(\lim_{x \to 1^-} f(x) = 1 \)

D. \(\lim_{x \to 1} f(x) = 1 \) \textit{is the correct answer.}

E. All the above are true
Slide 17 **Infinite Limits**

- We say \(\lim_{x \to c} f(x) = \infty \) if the values of \(f(x) \) “increase” without bound as \(x \) gets close to \(c \) but \(x \) not equal to \(c \).
- We say \(\lim_{x \to c} f(x) = -\infty \) if the values of \(f(x) \) “decrease” without bound as \(x \) gets close to \(c \) but \(x \) not equal to \(c \).

Similar descriptions apply for left and right hand limits.

Use the above descriptions to find/discuss

1. \(\lim_{x \to 0} \frac{1}{x^2} \)
2. \(\lim_{x \to 3^+} \frac{1}{x - 3} \)
3. \(\lim_{x \to 3^-} \frac{1}{x - 3} \)
Slide 18 **Limits and Graphs**

Sketch the graph of a function $y = g(x)$ that satisfies the following:

- $g(1) = 0$
- $g(2) = 3$
- $g(3) = 4$
- $\lim_{x \to 1} g(x) = -3$
- $\lim_{x \to 2^-} g(x) = \infty$
- $\lim_{x \to 2^+} g(x) = -\infty$
- $\lim_{x \to 3^+} g(x) = -2$
- $\lim_{x \to 3^-} g(x) = 1$