HW2: Finite Element Analysis
Due 2pm on February 26; Assigned on Feb 19, 2016

1. **FE approximation for u'.** Consider a mesh on $[a, b]$:

 \[a = x_0 < x_1 < \cdots < x_j < \cdots < x_N < x_{N+1} = b, \]

 with $I_j = [x_{j-1}, x_j]$ and $h_j = x_j - x_{j-1}$. Consider a finite dimensional space

 \[W_h = \{ w : w \in C^0([a, b], w|_{I_j} \text{ is a linear polynomial}, \ w(a) = w(b) = 0 \}. \]

 For $u, v \in W_h$, one can convert a bilinear form $b(u, v) = (u', v)$ into an algebraic form $c^\top B d$. Here c and $d \in \mathbb{R}^N$ are the coefficient vectors of u and v, respectively, when they are expanded with respect to hat function basis of W_h; $B \in \mathbb{R}^{N \times N}$.

 1.1) Find the matrix B explicitly.

 1.2) What is the value of $b(u, u)$ for any $u \in W_h$? Does your answer explain any of the properties of the matrix B?

2. **Weak derivative.** What is the k-th order weak derivative of $f(x) = \exp(|x|)$, with $k = 1, 2, \cdots$? Provide some reason /argument to support your answer.

3. **Variants of Friedrichs’ inequality.**

 3.1) Show

 \[||v||_{L^2(a,b)} \leq C \left(|\bar{v}| + ||v||_{H^1(a,b)} \right), \quad \forall v \in C^\infty(a, b). \]

 Here \bar{v} is the average of v over $[a, b]$, namely, $\bar{v} = \frac{1}{b-a} \int_a^b v(y)dy$. C is a finite and positive constant, independent of $v \in C^\infty(a, b)$ and possibly depending on a and b.

 3.2) Using the fact that $C^\infty(a, b) \cap L^2(a, b)$ is dense in $(L^2(a, b), ||\cdot||_{L^2(a,b)})$, and $C^\infty(a, b) \cap H^1(a, b)$ is dense in $(H^1(a, b), ||\cdot||_{H^1(a,b)})$, further show

 – The inequality (3) holds for all $v \in H^1(a, b)$. This gives one Friedrichs’ inequality.

 – With the same constant C, one has additional variants of Friedrichs’ inequalities,

 \[||v - \bar{v}||_{L^2(a,b)} \leq C ||v||_{H^1(a,b)}, \quad \forall v \in H^1(a,b), \]

 \[||v||_{L^2(a,b)} \leq C ||v||_{H^1(a,b)} \quad \forall v \in V = \{ v \in H^1(a,b), \bar{v} = 0 \}. \]

4. **A surprise!** Consider the first model problem discussed in class

 \[-u''(x) = f(x), \quad x \in (0, 1), \quad u(0) = u(1) = 0, \]

 its weak formulation: look for $u \in W$, such that

 \[(u', v') = (f, v), \quad \forall v \in W, \]

 \[(u', v') = (f, v), \quad \forall v \in W, \]
and its finite element method with piecewise linear space: look for $U \in W_h$, such that

$$(U', v') = (f, v), \quad \forall v \in W_h. \quad (8)$$

The space W is defined as

$$W = \{w : w \in C^0[0,1], w' \text{ is piecewise continuous and bounded, } w(0) = w(1) = 0\},$$

and W_h is defined in (2) ($a = 0, b = 1$) with respect to the mesh in (1). Let $G_i \in W$ satisfy

$$(v', G'_i) = v(x_i), \quad \forall v \in W, \quad (9)$$

where x_i is any given mesh node, $i = 1, 2, \cdots N$. Prove or verify that G_i is given by

$$G_i(x) = \begin{cases} (1 - x_i)x & 0 \leq x \leq x_i \\ x_i(1 - x) & x_i \leq x \leq 1 \end{cases}. \quad (10)$$

You might notice that $G_i \in W_h$. Now by choosing $v = e = u - U$ in (9), show that

$$e(x_i) = (e', G'_i) = 0, \quad i = 1, \cdots N. \quad (11)$$

This implies U is exactly equal to u at the mesh node points. Additional notes: (1) G_i is the Green's function for (6) associated with a delta function $\delta(x_i)$ at node x_i: G_i satisfies $-G''_i = \delta(x_i)$ on $(0, 1)$, and $G_i(0) = G_i(1) = 0$. (2) This somewhat surprising fact is a true one-dimensional effect. (3) The technique of working with a Green's function is useful in proving pointwise error estimates in one or higher dimensions. (4) If your code for hw1 works, you may want to numerically confirm this new discovery about U.