Instructor  Peter R. Kramer
Office:  Amos Eaton 310, 276-6896
kramep@rpi.edu (highly intermittent stochastic response time)
Office hours:  Tuesdays 3-4 PM and Thursdays 4-5 PM
Website:  http://www.rpi.edu/~kramep/Stoch/stoch2008.html

Classes  Mondays and Thursdays, 12:00-1:50 PM in Carnegie 101

Prerequisites  Familiarity with undergraduate level differential equations and linear
algebra. Some previous experience with probability theory is helpful.

Requirements  4 or 5 homework assignments, which will be posted on the course
website, and a final exam. The first homework will be due on September 22.
The course grade will be determined by a 70% weighting of homework and
a 30% weighting of the final exam. Students whose homework shows clear
positive evidence of representing their own thinking will be allowed to skip the
final exam and have their course grade determined completely (100%) by their
homework scores.

Each assignment and final exam will be scored out of 100 points, though usually
more than 100 points are available so that students have some choice in which
problems to invest their effort in. I certainly do not expect every student to
work on every problem, but rather expect students to work out some subset of
the homework problems with care, diligence, and clarity of presentation. The
grading standard will correspond to this expectation. That is, the full points for
a problem are generally only awarded for a solution which approaches the prob-
lem with the elegance and efficiency which should be expected from a proper
understanding of the lectures and the readings. Moreover, all nontrivial steps
must be explained, particularly those involving the concepts and techniques
covered in this course. Routine calculations involving lower-level mathematical
manipulations such as matrix algebra and calculus can be summarized without
providing details. If you use a numerical software package such as MATLAB or Maple to assist your calculations, please attach a copy of your code or worksheet.

<table>
<thead>
<tr>
<th>Average Score (rounded)</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>96–</td>
<td>A</td>
</tr>
<tr>
<td>90–95</td>
<td>A-</td>
</tr>
<tr>
<td>83–89</td>
<td>B+</td>
</tr>
<tr>
<td>76–82</td>
<td>B</td>
</tr>
<tr>
<td>70–75</td>
<td>B-</td>
</tr>
<tr>
<td>63–69</td>
<td>C+</td>
</tr>
<tr>
<td>56–62</td>
<td>C</td>
</tr>
<tr>
<td>50–55</td>
<td>C-</td>
</tr>
<tr>
<td>0–49</td>
<td>F</td>
</tr>
</tbody>
</table>

Grading scale:

Late homework will be penalized 10 points per business day, and no credit will be awarded once solutions are posted (which can be as soon as the next class). A homework submitted on the due date but after the time specified will be penalized 5 points.

**Midterm Assessment** When your second homework is returned, you will receive a projection of your course grade based on your performance to that point. At least if I remember. (Feel free to ask if I forget.)

**Grade Appeals** First of all, you are always welcome to ask me during office hours, for an explanation for why a problem solution was deemed incorrect or incomplete. I certainly would like all students to understand how to solve the problems, and to resolve any confusion about what constitutes a proper solution. The following applies only to situations in which the student is asking for a change in the score.

The only circumstance under which an appeal of a homework score will be entertained is a demonstrable factual error in grading, meaning either that scores were incorrectly totaled, or a correct response was marked incorrect. To determine whether your response met the criteria for being deemed correct, you should first consult the homework solutions, when they are posted. Uniform standards for partial credit are applied for the class, so I will not revisit the amount of points awarded for an incorrect or incomplete solution just because you think or feel you deserved more points. Any request for a grade correction must be made within one week of the date the solutions are posted for that homework.

If you think you have not been meted due justice by me, your next step is to present your concern to the chair of the Department of Mathematical Sciences. If any grade appeal is deemed to be frivolous (meaning it falls outside the guidelines of a legitimate appeal as described above), the student making the
frivolous appeal will be warned. Any future frivolous appeal will be penalized by a deduction from the homework score equal to the number of points concerned in the frivolous appeal.

**Academic Integrity** You are encouraged to work in small groups on the homework assignments, but your actual solutions should be your own work. That is, you should feel free to discuss how to approach the problems, to consult on how to do certain calculations, or to check your results. But you should never be copying from other students. I will only give credit for work that demonstrates that you understand what you are doing. Therefore, be sure to explain all major steps, especially how you are setting up the problem. It is not necessary to provide detailed reports on routine calculations, but do at least explain in words what you are doing.

If you obtained assistance from anyone outside of the course or any written material beyond the lecture notes and three recommended texts for the course, you must explicitly acknowledge the source.

If the solutions of two or more students do not demonstrate sufficient independence of thought, but do not rise to the level of academic dishonesty, then I may either simply split the points earned among all parties whose collective mind produced the solution or render all parties ineligible for exemption from the final exam. Flagrantly corrupt homeworks will earn no credit, and clear violations of academic integrity will also be reported to the Dean of Students’ Office. The distinction between “insufficient independence of thought” and “academic dishonesty” is primarily a matter of whether the work demonstrates an intent to misrepresent one’s own work. If you are not clear on the concept of academic dishonesty, you might consult the *Rensselaer Handbook of Students Rights and Responsibilities* or ask me directly about my expectations for integrity.

**Attendance** You don’t have to tell me if you miss a class. But don’t expect me to spend much time giving you help with homework if you’re not attending class.

**Course Objectives**:

- Experience in setting up and using stochastic models to analyze systems with uncertainty
- Familiarity with mathematical methods of characterizing uncertainty and its evolution in time
- Education in fundamental techniques for analyzing stochastic systems with discrete state space
Topics:

- Fundamentals of Stochastic Processes
- Finite-State, Discrete-Time Markov Chains
- Countable State, Discrete-Time Markov Chains
- Continuous-Time Markov Chains
- Martingales
- Renewal processes
- Modern applications (industrial planning, epidemiology, biomolecular modeling)

Textbook All are optional. You probably will want to purchase at least one, but I will excerpt some core reading material and post it on the website (through library reserves).

- Resnick, *Adventures in Stochastic Processes*: The book is written in an informal style, oriented a bit more toward applied mathematicians, physicists, and engineers than Lawler’s book. Much more detail is provided, but some students find it a bit overwhelming to read through.
- Karlin and Taylor, *A First Course in Stochastic Processes*, Second Edition: A rather advanced textbook with many interesting examples and a rather thorough theoretical development of the material from the course. It’s not easy reading, but you’ll learn a lot if you work hard at it. This is recommended for students with strong mathematical backgrounds who want to prepare themselves for advanced stochastic applications.