An Adversarial Hierarchical Hidden Markov Model for Human Pose Modeling and Generation

Rui Zhao and Qiang Ji
Rensselaer Polytechnic Institute (RPI)
Introduction

• Generative dynamic model: capture the data distribution change over time
 • Major categories:
 • Directed Probabilistic Graphical Models: HMM, DBN
 • Undirected Probabilistic Graphical Models: TRF, TRBM
 • Neural Networks: RNN, extension of VAE, GAN
 • Major tasks:
 • Representation learning
 • Data synthesis
 • Data imputation
Methods: Base Model

- Hidden Markov Model
 - Random variables: X_t, Z_t
 - Joint distribution:

$$P(X, Z) = P(X_0) \prod_{t=1}^{T} P(X_t|Z_t)P(Z_t|Z_{t-1})$$

Initial Emission Transition

```
Z_0 -> Z_1 -> Z_2 -> Z_3 -> ... -> Z_T
```

```
X_1 -> X_2 -> X_3 -> ... -> X_T
```

32nd AAAI Conference on Artificial Intelligence
Methods: Base Model

• Hidden Markov Model
 • Random variables: X_t, Z_t
 • Joint distribution:
 $$P(X, Z|\theta) = P(X_0|\pi) \prod_{t=1}^{T} P(X_t|Z_t, \psi)P(Z_t|Z_{t-1}, A)$$
 • Parameters: $\theta = \{\pi, A, \psi\}$
Methods: Model

• Bayesian Hierarchical Hidden Markov Model
 • Random variables: X_t, Z_t
 • Joint distribution: $P(X, Z|\alpha) = \int P(X, Z|\theta)P(\theta|\alpha)d\theta$
 • Parameters as random variables: $\theta = \{A, \psi\}$
 • Hyperparameters: $\alpha = \{\pi, \eta, \lambda\}$
Methods: Model Learning

• Goal: estimate the values of hyperparameters α
 • Conventional: Maximum Likelihood (ML)
 \[
 \alpha^* = \arg \max_{\alpha} \log P(\mathbf{X}|\alpha)
 \]
 \[
 = \arg \max_{\alpha} \log \int_\theta \sum_{\mathbf{Z}} P(\mathbf{X}, \mathbf{Z}|\theta) P(\theta|\alpha) d\theta
 \]

• Issue:
 • Intractability: integration over θ introduces additional dependency among \mathbf{Z}. Exact evaluation intractable.
 • Diffusion: tends to fit a diffused distribution in order to cover all the observed data.
Methods: Model Learning

• Proposed: Adversarial Learning (AL)
 • A two-player ‘game’
 • Generator: generate data looks as realistic as possible
 \[\mathbf{X} \sim P_G(\mathbf{X}) \]
 • Discriminator: differentiate synthetic data from the real
 \[P_D(y|\mathbf{X}), \ y = \begin{cases}
 1, & \text{if } \mathbf{X} \text{ is real} \\
 -1, & \text{otherwise}
 \end{cases} \]

• The overall objective

\[
\min_{\alpha} \max_{\phi} \mathbb{E}_{\mathbf{X} \sim P_{data}(\mathbf{x})} [\log D(\mathbf{X}|\phi)] + \mathbb{E}_{\mathbf{X} \sim P_G(\mathbf{x}|\alpha)} [\log(1 - D(\mathbf{X}|\phi))] \\
D(\mathbf{X}|\phi) \triangleq P_D(y = 1|\mathbf{X}, \phi)
\]

Theorem [Goodfellow et al. 2014]: Given the optimal discriminator, the optimal generator minimizes the Jensen-Shannon Divergence (JSD) between data distribution and model distribution.
Methods: Optimization

• Optimize Discriminator while holding Generator fixed
• Discriminator: a pair of HMMs: $P(X|\phi^+)$ and $P(X|\phi^-)$

$$\max_{\phi} L_D(\phi) \triangleq \mathbb{E}_{x \sim P_{data}(x)}[\log D(X|\phi)] + \mathbb{E}_{x \sim P_{G}(x|\alpha)}[\log(1 - D(X|\phi))]$$

$$D(X|\phi) = \frac{P(X|\phi^+)}{P(X|\phi^+) + P(X|\phi^-)}$$
Methods: Optimization

• Optimize Generator while holding Discriminator fixed
 • Generator: HHMM: $P(\mathbf{X}|\alpha)$

$$\max_{\alpha} L_G(\alpha) \triangleq \mathbb{E}_{\mathbf{X} \sim P_G(\mathbf{X}|\alpha)}[\log D(\mathbf{X}|\phi)]$$

Diagram:

- $P(\mathbf{X}|\alpha)$ (Generator)
- Synthetic data
- $P(\mathbf{X}|\phi^+)$ (Discriminator)
- $P(\mathbf{X}|\phi^-)$
- $P(y|\mathbf{X})$
Methods: Optimization

• Update α and ϕ using SGD + RMSProp

• Compute gradient $\frac{\partial L_G}{\partial \alpha}$ and $\frac{\partial L_D}{\partial \phi}$ with
 - MC estimate of expectation
 - $\nabla_x f(x) = f(x) \nabla_x \log f(x)$

Algorithm 1 Adversarial learning of HHMM

Require: \{X\}: real dataset. Q: number of hidden states. M: number of samples. N: number of parameter sets. k: update step for ϕ. l: update step for α.

Ensure: Generator α. Discriminator ϕ.

1: Initialization of α, ϕ
2: repeat
3: \hspace{1em} for k steps do
4: \hspace{2em} Draw M samples from both P_G and real dataset.
5: \hspace{2em} Update discriminator ϕ using RMSProp with gradient defined by Eq. (8) and Eq. (9).
6: \hspace{1em} end for
7: \hspace{1em} for l steps do
8: \hspace{2em} Draw N samples of θ. For each θ, draw M samples.
9: \hspace{2em} Update generator α using RMSProp with gradient defined by Eq. (4) and Eq. (5).
10: \hspace{1em} end for
11: until convergence or reach maximum iteration number
12: return α
Methods: Inference

• Data synthesis: generate novel data
 • Ancestral sampling of hidden state
 \[\theta \sim P(\theta | \alpha^*) \]
 \[Z_0 \sim P(Z_0 | \theta) \]
 \[Z_t \sim P(Z_t | Z_{t-1}, \theta) \]
 • Compute the most likely observations [Brand 1999]
 \[X^* = \arg\max_X \log P(\tilde{X}|Z, \theta) = \sum_t \log \mathcal{N}(\tilde{X}_t | \mu_{Z_t}, \Sigma_{Z_t}) \]
 where \[\tilde{X}_t = [X_t, X_t - X_{t-1}] \]
Experiments: Data

• Dataset:
 • CMU Motion Capture (subset): walking, running, boxing. 101 sequences on average per action.
 • Berkeley MHAD (subset): jumping, jack, boxing. 60 sequences per action.

• Representation: joint angles (CMU: 53, Berkeley: 60)
Experiments: Results

- Data synthesis: qualitative results

<table>
<thead>
<tr>
<th>Running</th>
<th>Walking</th>
<th>Jumping</th>
<th>Boxing</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Running]</td>
<td>![Walking]</td>
<td>![Jumping]</td>
<td>![Boxing]</td>
</tr>
</tbody>
</table>

32nd AAAI Conference on Artificial Intelligence
Experiments: Results

• Data Synthesis: Quantitative results
 • Metric: Average maximum Structural Similarity Index (SSIM) [Wang et al. 2004]
 • Meaning: measure overall diversity of the synthetic data. The lower the better
Conclusion

• Proposed a Bayesian hierarchical extension to HMM to allow large modeling capacity
• Developed an adversarial learning based method for estimating the model hyperparameters
• Demonstrated the method effectiveness on motion capture data synthesis and reconstruction.

• Future extension
 • Unsupervised learning of the model
 • Full Bayesian inference
 • Incorporate long-term dependencies
Thank You

Q&A

zhaor@rpi.edu