1. Problem

In this paper, we address the problem of facial feature tracking under varying facial expressions and poses by proposing a face shape prior model that is constructed from the Restricted Boltzmann Machine (RBM) and its variants.

Figure 1 Facial feature tracking when face is under facial expression and head pose change.

2. Motivation

Observations:
1. There exist patterns of face shape.
2. The face shape depends on facial expressions and head poses.

Motivation: To increase the accuracy and robustness of facial feature tracking algorithm, a face shape prior model that captures the face shape pattern with varying facial expressions and poses should be utilized.

3. Model

- A generative model based on Restricted Boltzmann Machines that captures the face shape patterns. It decomposes the shape variations into expression related and pose related parts.
- Part I: Variations of frontal face shapes with expression is modeled using Deep Belief Networks.
- Part II: Transferring frontal face shape to shape with different head poses is modeled with three-way RBM.

Figure 2 Face shape prior model based on Restricted Boltzmann Machines. X: feature point locations in frontal view. Y: feature point locations in non-frontal view. H: hidden nodes.

4. Model Training

- Model training is based on Contrastive Divergence algorithm [CD] [Hinton, 2002] [Mohamed et al., 2011] for part I and II separately.
- For part I, the Deep Belief Network is trained in a layer-wise manner so that training is relatively efficient [Mohamed et al., 2011].
- For part II, the three-way RBM model is trained by maximizing the joint likelihood \(p(x, y) \) using CD algorithm.

Specifically, the derivative [Memisevic et al., 2010] of the log-likelihood \(L(x, y; \theta) \) can be written as

\[
\frac{\partial L}{\partial \theta} = \frac{\partial}{\partial \theta} \log p(x, y; \theta) = \frac{\partial}{\partial \theta} \log p(x, y; \theta) - \frac{\partial}{\partial \theta} \log p(h; \theta)
\]

Using CD algorithm, equation (7) can be approximated with Gibbs sampling with the following equations:

\[
p(h_k = 1|x, y) = \sigma \left(\sum_i w_{ki} \sum_j \phi(x_{ij}|\theta) + w_k \right)
\]

\[
p(x, y) = \frac{1}{e^{-E(x, y)}}
\]

\[
p(x, y, h) = \sum_j \left(\sum_i \phi(x_{ij}|\theta) \sum_h \phi(h_i|\phi) \right)
\]

5. Facial feature tracking with shape model

- Estimation of the true facial feature point locations \(Y^* \) with facial expressions and pose base on measurements \(Y_m \) and prior model in a probabilistic formulation:

\[
Y^* = \arg \max_Y P(Y_m|H)^P(Y)
\]

- \(P(Y) \) can be estimated from the samples generated by the prior model shown in figure 3 using Kernel Density Estimation method or with a Gaussian Assumption.

To generate the sample, \(Y \) is initialized with \(Y_m \). Then, the algorithm updates \(X, H, Y \) sequentially using Gibbs sampling within part II. Furthermore, the algorithm updates \(X \) by sampling within part I. Finally, the output sample of \(Y \) is generated by the updated \(X \) and previously estimated \(H_2 \).

6. Experimental Results

- Table 1 Experimental results on CK+ database
- Table 2 Experimental results on MMI database
- Table 3 Experimental results on ISL database

(a) Sample sequence from American Sign Language database

(b) Sample sequence from ISL database

Figure 3 Performance of the proposed model based on synthetic data. (a) face with outlier (left eyebrow tip); (b) correction of (a); (c) face with corrupted points on left half face; (d) correction of (c). First row: FrontalRBM (Part I); Second row: PoseRBM (Part I and II).

Figure 4 Facial feature tracking on sample sequences.