Math 4100 Homework 1

Due: 8:00 AM, September 11

(2 pts) Problem 1

Let \vec{u} and \vec{v} be two orthogonal vectors in \mathbb{R}^n. Formulate and prove a version of the Pythagorean theorem that applies to \vec{u} and \vec{v}.
(2 pts) Problem 2

Find two vectors \vec{v} and \vec{w} that are perpendicular to $(1,0,1)$ and to each other.

(2 pts) Problem 3

Find two different combinations of the three vectors

$$\vec{u} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}, \quad \text{and} \quad \vec{w} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

that produce

$$\vec{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

For any three vectors in the plane, will there always be at least two different combinations that produce \vec{b}?
(2 pts) Problem 4

Find the pivots and the solutions for $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \quad \text{and} \quad \vec{b} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 5 \end{pmatrix}. $$