1. Consider the population model given by

\[\frac{dy}{dt} = -y \left(1 - \frac{y}{T}\right) \left(1 - \frac{y}{K}\right) \]

where \(t \) is time, \(y(t) \) measures the population, \(y_0 \) is the initial population, and \(T \) and \(K \) are positive constants with \(T < K \).

a) Sketch the graph of \(F(y) \) versus \(y \). Find all critical points and determine whether each critical point is asymptotically stable or unstable.

From the graph, \(y_c = 0 \) is asymptotically stable, \(y_c = T \) is unstable, and \(y_c = K \) is asymptotically stable.

b) It is known that the population approaches \(y = 5 \) as \(t \to \infty \) if \(y_0 = 5 \), and that the rate of change of the population is \(-2/5\) when \(y = 1 \). Determine the behavior of \(y(t) \) as \(t \to \infty \) if \(y_0 = 3 \).

From the information provided, we have that \(F(5) = 0 \), so \(y_c = 5 \) is stable, and thus \(K = 5 \). We also have that \(F(1) = -2/5 \). This leads to the equation

\[\frac{-2}{5} = -\frac{4}{5} \left(1 - \frac{1}{T}\right) \]

which leads to \(T = 2 \).

Since we now know \(T \) and \(K \), we can look at what happens for \(y_0 = 3 \). Since \(T < 3 < K \), \(y(t) \) should approach \(y = 5 \) as \(t \to \infty \).

2. Consider the second-order constant-coefficient equation

\[2y'' - y' - 3y = 0 \]

(a) Find the general solution of the differential equation by considering solutions of the form \(y(t) = e^{rt} \), where \(r \) is a constant.

With the solution of the form \(e^{rt} \), take the first two derivatives

\[y' = re^{rt}; \quad y'' = r^2e^{rt} \]
and plug into the ODE to get

\[e^r(2r^2 - r - 3) = 0 \]

\[2r^2 - r - 3 = (2r - 3)(r + 1) = 0 \]

So, \(r_1 = 3/2; r_2 = -1 \) and the two solutions are \(y_1 = e^{3t/2} \) and \(y_2 = e^{-t} \), which give the general solution

\[y = c_1 e^{3t/2} + c_2 e^{-t} \]

(b) Find the unique solution satisfying the differential equation and the initial conditions \(y(0) = 3 \) and \(y'(0) = 2 \).

Applying the initial conditions gives the system

\[3 = c_1 + c_2 \]

\[2 = \frac{3}{2}c_1 - c_2 \]

Solving this gives \(c_1 = 2 \) and \(c_2 = 1 \), so the unique solution is then

\[y = 2e^{3t/2} + e^{-t} \]

3. Consider a second-order linear equation

\[t^2 y'' + ty' + 4y = 0, \quad t > 0 \]

(a) Find a constant \(\alpha \) such that \(y_1(t) = \cos(\alpha \ln t) \) and \(y_2(t) = \sin(\alpha \ln t) \) are solutions of the equation.

\[
\begin{align*}
y_1' &= -\sin(\alpha \ln t) \frac{\alpha}{t}; \\
y_1'' &= -\cos(\alpha \ln t) \frac{\alpha^2}{t^2} + \sin(\alpha \ln t) \frac{\alpha}{t^2} \\
y_2' &= \cos(\alpha \ln t) \frac{\alpha}{t}; \\
y_2'' &= -\sin(\alpha \ln t) \frac{\alpha^2}{t^2} - \cos(\alpha \ln t) \frac{\alpha}{t^2}
\end{align*}
\]

plugging in, both \(y_1 \) and \(y_2 \) require \(\alpha^2 - 4 = 0 \), so we can take \(\alpha = 2 \), since \(\alpha = -2 \) is redundant, and \(y_1 \) \(y_2 \) will be solutions.

(b) Compute the Wronskian, \(W(y_1, y_2) \), with the value of \(\alpha \) found in part (a) to determine whether \(y_1(t) \) and \(y_2(t) \) are independent solutions.

\[
W(y_1, y_2) = \det \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix} = \begin{bmatrix} \sin(2 \ln t) & \cos(2 \ln t) \\ \cos(2 \ln t) \frac{2}{t} & -\sin(2 \ln t) \frac{2}{t} \end{bmatrix} = \left(-\sin^2(2 \ln t) - \cos^2(2 \ln t) \right) \frac{2}{t} = -\frac{2}{t} \neq 0
\]

So, since the Wronskian is never 0 for any \(t > 0 \), \(y_1 \) and \(y_2 \) are independent solutions.