1. Find the general solution of the nonhomogeneous differential equation

\[y'' - y' - 2y = e^{2t} + \cos t \]
2. A spring is stretched 0.2 m by a force of 3 N (i.e. 3 newtons). A 3 kg mass is hung from the spring and also attached to a device which exerts a viscous damping force of 5 N when the velocity of the mass is 2 m/s. There is no external forcing on the system. The mass is set into motion from its equilibrium position by an initial upward velocity of 4 m/s.

(a) Determine the spring constant k and the damping coefficient γ of the system.

(b) Give the initial-value problem whose solution specifies the downward displacement of the mass, $u(t)$, as a function of time t. You need not solve the problem for $u(t)$.
2. (c) A different mass-spring system with periodic forcing satisfies

\[2u'' + 9u = 5 \cos 2t \]

State which graph below best describes the behavior of \(u(t) \) for this system. (You need not solve the differential equation for \(u(t) \), but briefly explain your choice.)

Plot A

Plot B

Plot C

Plot D
3. Solve the boundary-value problem for $v(x)$ or show that a solution does not exist.

\[v'' + 4v = 1 + x - x^2, \quad v(0) = 9, \quad v(\pi) = 3. \]
4. Let
\[f(x) = \begin{cases}
 x & \text{for } 0 \leq x < 1 \\
 0 & \text{for } 1 \leq x \leq 2
\end{cases} \]

(a) Find \(C(x) \), the Fourier cosine series of \(f(x) \) with \(L = 2 \).

(b) Sketch \(C(x) \) for the interval \(-6 \leq x \leq 6\) on the graph below. (Indicate where the series converges at discontinuities.)
5. Consider the nonhomogeneous differential equation

\[t^2 y'' + 2ty' - 6y = 2t^3 + t^2, \quad t > 0 \]

(a) Show that \(y_1(t) = t^2 \) and \(y_2(t) = t^{-3} \) are independent solutions of the corresponding homogeneous equation.

(b) Use variation of parameters to find a particular solution of the nonhomogeneous equation.