Example. Consider the rate equation $y' = ky$, where k is a constant.

(a) Determine the order of the differential equation and give an interpretation of the constant k.

(b) Find all values of the constants C and r such that $y(t) = Ce^{rt}$ is a solution of the rate equation.

\begin{itemize}
 \item[a)] The highest deriv. is $y' \Rightarrow$ Order of the d.e. = 1

 Interpretation: d.e. $\Rightarrow y' \propto y$ and $k =$ const. of proportionality

 For example: if $k > 0$ and $y > 0 \Rightarrow y' > 0$ so $y(t)$ increases

 if $k < 0$ and $y > 0 \Rightarrow y' < 0$ so $y(t)$ decreases

 \item[b)] Let $y(t) = Ce^{rt}$

 $y' = C re^{rt}$

 d.e. $\Rightarrow C re^{rt} = kCe^{rt}$ so $r = k$

 Solution $\Rightarrow y(t) = Ce^{kt}$, C arbitrary
\end{itemize}