Homework 6, Introduction to Number Theory, Due Monday, May 11th

1. Suppose that the public encryption key for the RSA algorithm $n = 2537$ and $e = 13$. (n is the modulus and e is the exponent.) Convert your initials to a 4 digit (or 3 digit) number P, and find the encryption cipher C of P using the RSA algorithm.

2. Find the decryption key d if $n = 2537$ and $e = 13$.

3. Use the decryption key you found in problem 2 to decrypt the cipher C you made in 1 and verify that you get back your initials.

4. Let p and q be odd primes and $n = pq$. Suppose p and q have been lost, but you know n and $k = \phi(n)$. Show how to recover p and q from n and k by deriving a formula to express p and q explicitly in terms of n and k.

5. Prove that if n is a positive composite number then $\phi(n) < n - 1$.

6. Use the result of the previous exercise to help prove the following:

 - Suppose $n > 1$. The number n is prime if and only if there exists a number b such that $(b, n) = 1$ and $b^{n-1} \equiv 1 \pmod{n}$ and $b^{(n-1)/d} \not\equiv 1 \pmod{n}$ for all positive divisors d of $n - 1$ with $d > 1$.

 Hint: Use $h = \exp_n(b)$ in your proof.

7. Extend the result in the previous exercise to prove the following:

 - Suppose $n > 2$. The number n is prime if and only if there exists a number b so that $(b, n) = 1$ and $b^{(n-1)/2} \equiv -1 \pmod{n}$ and $b^{(n-1)/q} \not\equiv 1 \pmod{n}$ for all odd prime divisors q of $n - 1$.

 This is potentially useful for certifying primality of a given number in situations where the prime factors of $n - 1$ are known.