Volume 138, number 6,7 PHYSICS LETTERS A 3 July 1989

CANONICAL TRANSFORMATIONS AND GRAPH THEQORY *

Chjan C. LIM

Mathematics Department, University of Michigan, Ann Arbor, MI 48109, USA
and Institute for Mathematics and its Applications, Minneapolis, MN 55455, USA

Recetved 29 January 1989; accepted for publication 10 April 1989
Communicated by D.D. Holm

In the class of symplectic matrices, two infinite subsets are generated by binary spanning trees. For given N, the procedure
begins with the complete graph, K, to which N—1 virtual vertices are added in well-defined ways. Then spanning binary trees
that connect the 2N — 1 vertices are obtained and from these trees, explicit formulae give the symplectic matrices. These matrices
define linear canonical transformations for N-body problems in vortex dynamics, plasma physics as well as celestial mechanics.

1. Introduction

In the past, there have been many significant applications of graph theory in theoretical physics. Outstanding
amongst these are the Feynman diagrams in quantum field theory [1] and Mayer’s cluster expansion in sta-
tistical mechanics [2]. The results in this note represent a new application of graph theoretical ideas to ca-
nonical transformation for classical Hamiltonian systems. More specifically, the transformations discussed here
are applicable to a variety of N-body problems in vortex dynamics [3], plasma physics [4] and celestial me-
chanics [5]. In gravitational N-body problems, isolated cases of these canonical transformations have received
the attention of astrophysicists and mathematicians who know them as the Jacobi coordinates [5]. One of the
aims here is to give a unified treatment of these transitions in terms of spanning binary trees, that generalizes
the Jacobi coordinates. A 2N X 2N matrix M is said to be symplectic if

MIM=J, J=[ 0 'N]. (1)
-y 0
In the context of Hamiltonian mechanics, a transformation in phase space, 7*(R"V),
Q=0Q(g;p), P=P(¢p), ‘ (2)
is canonical if its Jacobian matrix is symplectic. From (2), it is clear that the Jacobian matrix M has the form
A
m=[2 o] (3)

where A, B, C, D are N X N matrices. Applying (1)-(3) it is clear that the following conditions are equivalent
to the above definition of a symplectic matrix;

A'C, B'D are symmetric N X N matrices , (4a)
AD-CB=1,. (4b)

* The results in this paper have been presented in seminars at Brown University and the University of Minnesota.
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Also evident is the observation that these conditions for a canonical transformation are independent of the
Hamiltonian function.

In this note, we consider two classes of linear canonical transformations; equivalently we discuss a graph-
theoretic method for generating symplectic matrices. These matrices fall into two general classes; they take the
following forms:

™M, [g\ OA], A is an N X N real matrix , (5)
and

A 0 .
M, = [0 D]’ D+ A are 3N X 3N real matrices . (6)

In the first case, (4a) is satisfied (trivially) while (4b) translates into

AA=1, . (7)
In the other case, (4a) is also trivial and (4b) becomes

AD=t;, . (8)

Although these symplectic matrices are identified with canonical transformations independent of the par-
ticular Hamiltonian function, to each class of matrices belongs a natural family of Hamiltonians. To distinguish
them, we will call those associated with M, first-order Hamiltonians, and those associated with M, second-
order Hamiltonians. It turns out that these labels are appropriate in a different sense. The second-order Ham-
iltonians arise naturally in the N-body problems of celestial mechanics (cf. refs. [5-7]). They involve Newton’s
second law of motion directly and their Hamilton’s equations are obtained from the second-order equations
of motion (second-order time derivatives) after the usual reduction [5]. On the other hand, the first-order
Hamiltonians, such as those from vortex dynamics [3], and plasma physics [4], do not involve accelerations
and forces; their Hamilton’s equations are not derived from equations of motion with second-order time
derivatives.

We will describe these Hamiltonians explicitly in section 2. In section 3, we show how a complete graph K
can be associated with these Hamiltonians. Next we will describe a procedure for generating spanning tree graphs,
starting from K,. Finally, explicit formulae for the symplectic matrices will be given in terms of the spanning
tree graphs. Instead of complete proofs which are published elsewhere [8,9], we give some illuminating ex-
amples of our procedure in section 4 of this note. For graph-theoretical concepts (which are essentially self-
evident), we refer the reader to refs. [10,11].

2. Hamiltonians

The first-order Hamiltonians described in section 1 have the general form

H(Z):Re{ Yy I",Fk["jk(Zj—Zk)}, Z=(2Z,,....2Zy), 9)

Jrk=1

where Z;eC give the positions of N particles in the plane, and I;eR are their “weights”. F,, are analytic func-
tions of one complex variable (with the possibility of isolated singularities ). The conjugate variables (canonical
coordinates) are #!

¥ In this paper, we will focus on “weights” of one sign; the general case is only technicaily different.
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o=V I x, p=VI01y, Z=x+iy. (10)
A concrete example from vortex dynamics [4] is given by
F =logarithm (1)

in which the particular branch of the complex logarithm function is immaterial because the Hamiltonian in-
volves only the real part.
The second-order Hamiltonians are the usual N-body Hamiltonians with general potential functions,
oy |2

Hg.p)= T 2= -Ul@). (12)

where the Euclidean norm in R? is

1p1= (pS")2+ (p)2+ (0?2

and the potential has the form

N :
U(g)=G Y mim

JEk ‘qj_qkllv

G is a real constant, m; are the masses of the particles and

lgi—ail'= (g —qtV)+ (g/> — i)+ (¢ —qf>)?] "2,

/ is a real number greater than zero, and the Newtonian case is obtained when /=1.

3. Spanning binary trees and symplectic matrices

Although the symplectic matrices we are concerned with can be discussed without reference to the Ham-
iltonians in section 2, we want to motivate the introduction of graph-theoretic concepts by starting our dis-
cussion with N-body problems with pair-wise (2-body) interactions. Both classes of Hamiltonians in section
2 are of this type.

If we connect all possible pairs of points in the plane given by Z=(Z,, ..., Z») in (9), the resulting picture
is the complete graph, K. Similarly, for the Hamiltonian (12), we obtain K, where the vertices are located
in R3, Thus, we are justified in associating a complete graph K, with the abstract N-body problem with pair-
wise interactions. Furthermore, each particle (vertex) has a “weight”; in (9) they are I; (which represents
vorticity in vortex dynamics, (11)).

Our procedure consists of three parts: (a) an averaging step that defines a binary operation INTER, (b)
based on INTER, N—1 virtual vertices are added to the original N vertices in K to make a spanning tree with
2N -1 vertices G(N), and (c) for each virtual vertex in-the tree, corresponding rows in the matrices Aand
D (5), (6) are given explicitly by well-defined rules.

The binary operation, INTER is given by

I'(A)A+TI'(B)B
A+
where V=1V, is a new virtual vertex and the arguments A, B can be either a previously generated virtual vertex,

e.g. V, for some 4 <j or one of the original vertices in Ky, e.g. Z,, g=1, ..., V. To complete step (a), the weight
of the new virtual vertex is calculated as follows:

I'(V)=I(A)+I'(B). (14)

V=INTER(A, B) = I'(A),I'(B)eR; V,A,BeC, (13)

260



Volume 138, number 6,7 PHYSICS LETTERS A 3 July 1989

This operation is governed by the rules

(1) vertices, virtual or original can only be used once as arguments in INTER;

(ii) to begin, k< [N /2] disjoint edges in K, are pre-selected to produce the first k virtual vertices, V; where
1gj<k;

(ii1) the process stops when there are no eligible pairs of vertices remaining that can be used as arguments
of INTER.

The original vertices, Z,, are said to be in tier 0, while the first & virtual vertices in (ii) are said to be in
tier 1 and virtual vertices generated by subsequent applications of INTER are said to be in tiers > 2, according
to the number of times INTER has been used.

After a relabelling (by permutations on N integers) of the tier-0 vertices, the tier-1 virtual vertices can with-
out loss of generality be taken to be

V,=INTER(Z,;_,, Z,), j=1, .. k. (15)

The number of tier-1 vertices is assigned to the index & in the labels G§(N) for the spanning trees with 2N —1
vertices and A%, the associated tree which will be introduced next.

In order to organize our procedure, we introduce an associated tree A% for each N and each k< [N /2]. The
branches of A% code the different routes for constructing Gi(N) from K. For given N and k< [N /2], the
associated tree, A%, is constructed according to the rules

(i) the root is always labelled V,,

(i1} the branches code the generation of virtual vertices in tiers >2; beginning with V., and ending with
V_1, the vertices of A% below the root appear in the same order (increasing subscript) on each branch; it is
assumed that the tier-1 vertices V; for j=1, ..., k are generated as in (15),

(iii) the edges of A% are labelled by boxed vertices consisting of only the Z,, 2k+1<g<N, and the tier-1
vertices, V,, j=1, .., k,

(iv) an edge, [V] = (1, @) where u is the upper vertex encodes the operation w=INTER (u, v).

We now give an example of the above step for generating spanning trees, which is part (b) of the whole
procedure. The example chosen is A? (cf. fig. 1) where k=2 is the maximum number of tier-1 virtual vertices
or equivalently, disjoint edges in the complete graph, Ks. We begin by generating the tier-1 vertices

V,=INTER(Z,, Z,), V,=INTER(Z,,Z,). (16)

The root of A2 is denoted by V,. From the root there are two distinct ways to generate the tier-2 vertex, V.
On the right branch (fig. 1),

Gi(5) Gi(5) Zs b

Fig. 1. (a) Associated tree, AZ; (b), (¢) spanning tree graphs, G3(5),s=1, 2.
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V5 =INTER(V,,V,),
and on the left,
V;=INTER(V,, Z,) .

This is depicted in the trees, G5(s), where s=1, 2 for the left and right branches respectively (cf. figs. 1b, ic).
The next vertex in each branch of A? is the tier-3 virtual vertex, V, on the right,

V,=INTER(V;, Zs)

and on the left,

V,=INTER(V,, V,) .

There is now no additional branching in A? and all 4 virtual vertices in G{(5), s=1, 2, have been generated.
Clearly, all the tier-0 vertices, Z,, g=1, ..., 5 and the tier-1 vertices, V,, j=1, 2 have been used only once, thereby

satisfying the rules that govern INTER.
The two branches of A2 have the following path representations,

G£(5)={E), } G§(5)={'Vz

where the boxed quantities denote the edges of AZ to distinguish them from the vertices of G§(5), after which
they were named.

The index s in the label Gi(N) takes the value of the binary number obtained when the path representation
(17) is put in binary form,

Gi(5)={0 1}, G3(5)={1 0}, (18)

where 0 denotes a tier-0 vertex, and a 1 denotes a tier-1 vertex. This completes the example A2 and gives a
description of parts (a) and (b) of our procedure.
Next, we give the third part (¢) of our procedure in which the spanning trees G (N) are associated with
symplectic matrices, M, and M, (5), (6). We begin with the rules for M, and then modify them for M,.
Let

, | 2 } (17)

ARG (g) = Ist argument in INTER that generated V,, the gth virtual vertex , (19a)
ARG2(g)=2nd argument in the same operation . (19b)
In other words,

V,=INTER(ARG1(g), ARG2(q)) , (20)
and the “weight” of V,, is

I'(V,)=I'(ARG1(gq))+I'(ARG2(q)) . (21)

We remind the reader that the arguments of INTER are complex numbers that give the position of particles
or equivalently, vertices in either R? or R*; the “weights™ are real numbers defined by (14).
In the case of M, for every virtual vertex V, in Gi.(N), we define

172

[ARG2(g)—-ARGI(q)] (22a)

0, = [F(ARGI(CI))'F(ARGNCI))

I ATA VAR
*\Tql

J
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for g=1, ..., N—1 and

_2anz
PNETSNOT,

j=1

(22b)

Since the arguments of INTER are ultimately linear combinations of the tier-0 vertices, Z;, j=1, ..., N, formulae
(22) define a real linear transformation on C". Recalling that the symplectic coordinates for first-order Ham-
iltonians {9) are given by the complex number (cf. (10))

w,=/T| Z, j=1,..,N, (23)

we obtain the desired transformation on C" by substituting w;//|I;| for Z; in (22a,b). The matrix of this
transformation is the N X N real constant matrix A and M, is given by

A0
M|=[O A].

M,, a 2N X 2N real matrix, can be viewed as a transformation from the 2N symplectic coordinates, (10), or
the real and imaginary parts of (23) to the 2N coordinates obtained by taking real and imaginary parts of p,,
q= 1, veey N.

The main result for M, is

Theorem 1. For any N and k< [N /2], the spanning trees G} (N) generated by INTER via A% define linear
canonical transformations (symplectic matrices M, ) which are explicitly given by (22) and (23).

The proof of this theorem is based on verifying that the matrix A is orthogonal for each G;.(N). The graph-
theoretic details are given in ref. [8].

In the case of M, the definitions (19) are valid and the “weights” I', become masses of the particles, m;.
We now modify (22) to take into account the asymmetry between the canonical coordinates and momenta of
the second-order Hamiltonians (12). For each virtual vertex, V; in Gi(N), we write

0,=ARG2(j)—ARG1(j) , (24a)
P= {F(ARGIUH{;ARGW))] [ARG2(j)—ARG1(j)], (24b)

where ARG1 (), ARG2(j), Q,, P, are vectors in R*, I'( ) are the masses and ARG ()) denotes the time de-
rivative. This is completed by

2Lmg, >N D
= S A P = == 24c¢
Ql\ zlemj N zjl'\;lmj ( )

The arguments ARGI o, ARGZ()) are linear combinations of the tier-0 vertices, g,eR?, j=1, .., N while the
time derivatives ARG 4, ARG2U) can be written as linear combinations of the conjugate momenta by the
substitution

;}=‘L (25)

Therefore, (24) give a linear (real) transformation from (g, p;)eR* X R*" to new coordinates (Q), P;)e
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R3*¥ xR, In fact, (24a) defines the 3N X 3N real constant matrix A and after using {25), the second part (24b)
defines the 3N X 3N matrix, D in M, (6).

By (8) the proof [8] of the following theorem is based on checking that A'D =1, for every G;{N) generated
by the INTER via A% from the complete graph K, (which in this case is located in R*). As far as graph-theory
is concerned, the fact that K, in this case is in R?, does not make any difference. The main result for M, is

Theorem 2. For any N and k< [N /2}], the spanning trees G}(N) define linear canonical transformations
(symplectic matrices M,) which are explicitly given by (24a,b) and (25).

4, Examples and conclusion

We present two simple examples of canonical transformations generated by our procedure. One of the ex-
amples is a symplectic matrix of type one while the other is of type two but they are both generated from the
same spanning tree, G1(5) (cf. fig. 1b).

Following the procedure discussed in section 3 (22), for every virtual vertex in G1(5) there belongs a row
in the matrix A, given by the complex formulas

_I:FIFZ ]l/2<w2 _ wl) _[F3f4 ]l/2<wa _ wz)
hETFR) \Un T ) PTInAnd \Un T i)

p_l:(rl'*‘rz)(rs)]”z(ws I'ow+ szz>
3= >

L +1,+T -

JTs Ii+r,

(O +L+T) 40D (Jh o+ Taos T o+ /T 0+ Fsﬁs)

P T ¥t L+ +Ts |\ I +1, T+, +T,

f:l\/f‘lwi' (26)

Ps=T3ET

B n
[ I J”z 1 1 . .
| To+T ( NG T, 0)
" LT ]”2 . . 1 I 0)
| I+ T ( JIi JTs
AL ’(rlrz)(rs)l” -JT, G . . ) 27)
=1k r+T, JTs
REART PSS ST0atD oS A/ SR/ PR V) PR N/ PR/ )
| I+ D+ s+ T+ T | I +I,+T, I ++s I+, T+, Di+D+Ts
[ 1
LE—T] (V7 OO

is easily shown to be orthogonal by verifying that the rows form an orthonormal basis for R>. Therefore, the
matrix M, constructed according to (5) is symplectic by (7).

The above linear transformation together with infinitely many others generated by the same procedure are
guaranteed to be canonical transformations by theorem 1. Due to the symmetrical form (35) of these symplectic
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matrices (where A appears as diagonal blocks ), the most natural Hamiltonians to which these canonical trans-
formations apply are the first-order ones, (9). The symmetry between the “coordinates” g; and the “moments™
D; is clear since they are essentially the real and imaginary parts of the positions of the particles in the complex
plane, (10). In other words, for (9), phase-space can be identified with configuration space. This symmetry
sets the first-order problems apart from the second-order Hamiltonians (11), where phase-space R3¥XR>" can
no longer be identified with configuration space R3>". The second-order problems (11) thus provide the natural
setting for applying the canonical transformations associated with symplectic matrices of type two of which an
example is given next.

This example of M, is generated by applying (24) to each virtual vertex in the graph G1(5). The upper left
block A is given by (24a,c),

-1 1 0 0 0
0 0 -1 1 0
m, m;
T m,+m, m,+m, 0 0 1
A= . (28)
—m; —-m, m; +m, —m;
m;+m,+m; m,+m,+m; m;+m, mi;+m, m,+m,+m;

ml m2 m3 my m5

>.m, >m, >m; >m; > m,

The lower block D transforms the old momenta, p;, into the new momenta, P, and is given by (24b,c); each
(bold) entry in A above and D below represents a 3 X 3 diagonal matrix, for example,

-1 0 0 | m;' 0 0
0 0 -1 2 0 0 my!

The 3N X 3N real constant matrix D takes the form

’— =
m,m, -1 1
[ml +m2] (m, m; ° 0 0)
_msma_ =1 1
|:m3+m4] <0 0 m; m, 0)

' (m,+ my)yms ‘ ( -1 -1 o 0 s
R IR T m;Fm, m,+m, m;
[(m1+m2+m5)(m3+m4):| =1 -1 ! ] = )
Ziom; m+m,+m; m+m,+m; mi;+m, m;+m, ms+m,+ms
[ ] T
Tiaim; (1 1)
(29)

The above symplectic matrix (28), (29) defines a linear canonical transformation for 5-body problems in
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celestial mechanics where it should be noted that the potentials U(g) (12) are not restricted to the gravitational
square force-law (cf. ref. [5]). In fact, it gives an example of the so-called Jacobi coordinates, well-known in
the 3-body problem [S5]. Theorem 2 can be viewed as stating that in the class of 3NV X 3N matrices of the form
(6) there exists an infinite subset that is generated by binary trees Gi(/N), and which satisfies the condition
for being symplectic, (8). These symplectic matrices, M,, give a sweeping generalization of the Jacobi coor-
dinates, which are discussed only in special cases (for example the 3-body problem) in the literature.

The canonical transformations defined by M, are onglnally conceived to study clustenng phenomena in vor-
tex dynamics e ¢ ; ' ;

fact no further restrictions on the form of the functlons F,k in (9) are necessary for these transformations to
work. Similarly, the Jacobi coordinates defined by M, can be applied to the study of clusters in stellar dynamics
[14]. In fact, the so-called cluster coordinates discussed in McGehee’s paper [6] are known to be symplectic
coordinates #. This provides the point of departure for an extension of the ideas presented to symplectic ma-
trices generated by spanning trees more general than binary ones.
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