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Abstract

This paper examines the practicality of using a Monte Carlo al-
gorithm to analyze the point-vortex equilibrium statistical model of
two layers baroclinic quasigeostrophic vortices in the two dimensional
plane. The conserved quantity, angular momentum, serves to confine
the vortices, eliminating the need for complicated boundary condi-
tions. This method provides a fast and efficient algorithm for solving
the mean field nonlinear elliptic PDEs of the equilibrium statistical
theory. A verification of the method is done by comparison with the
exact Gaussian solution at inverse temperature zero. The numerical
results obtained include a geophysically and computationally relevant
power law for the radii of the supports of the most probable vorticity
distributions: For fixed total circulations, and fixed average angular
momentum, the radii of both layers are proportional to the square-root
of the inverse temperature B. This confirms that the most probable
vorticities are supported on disks of finite radii. By changing the chem-
ical potentials y of the runs, one is able to model the most probable
vorticity distributions for a wide range of total circulations and en-
ergy on a fixed disk (of fixed radius) with zero boundary conditions on
the bounding circle. The radially symmetric most probable vorticities
at positive temperatures are consistently, near flat-top profiles for the
layer with the greater total circulation, and near Gaussian profiles for
the layer with the weaker circulation.

Keywords: Heton model, statistical mechanics, Monte Carlo simulation,
mean field theory.



1 Introduction

The Monte Carlo algorithm had been previously used in the study of equi-
librium statistical mechanics of vortices in fluid dynamics. In this paper, we
extend its use to an unbounded two layer baroclinic point vortex model.

In this model developed by DiBattista and Madja [1], the rotational in-
variance of the Hamiltonian and domain give rise to an angular momentum
constrain. In the same paper, the authors gives the mean-field equations
for this model, which they then proceed to solve numerically based on an
iterative algorithm adapted from Turkington and Whitaker. To solve the
mean-field equation in this setting, the domain needs to be finite, and suit-
able boundary conditions applied based on the known exact solution for the
far-field stream function and potential vorticity.

The point vortex Monte Carlo method provides an alternate approach to
solving the mean field equations. Using this approach, we can do away with
any assumptions on the far-field stream function and potential vorticity.

The approach and results in this paper can be viewed from two different
but related points of view. First, in view of the fact that a complete proof of
the asymptotic exactness of the mean field equations in [1] is not yet available
(although there should be no problem supplying one), we go behind the scene
of these mean field equations and work with the ensemble of particles in the
Heton model. The second point of view is to take the mean field equations in
[1] as given and our approach then offers a very fast and efficient numerical
method to solve these nonlinear elliptic PDEs.

This paper is organized as follows: in section two we collect all the equa-
tions and mention some of their consequences. Section three describes the
Monte Carlo algorithm. Section four compares the Monte Carlo algorithm
with the exact solution of the vorticity equations at inverse temperature
B = 0. The numerical results gathered by the Monte Carlo simulations for
positive and negative [ are presented in sections five and six respectively.

2 Two layer quasi-geostrophic vorticity equa-
tions
DiBattista and Madja [1] presents a comprehensive discussion on the two

species point vortex model of the two layer quasi-geostrophic vorticity equa-
tions. In this model, the stratified fluid which is permitted to evolve in the



unbounded plane, is partitioned into two thin slabs, each of constant depth,
density and temperature. We shall not reproduce their discussions here, in-
stead we collect only the necessary equations for our modeling purposes. The
reader is referred to several relevant papers for the geophysical origins of this
theory: [2], [4] , [5], [3], [7] , [6] , [8] , [9], [10].

The two layer quasi-geostrophic vorticity model give rise to the following
conserved quantities:
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ga(x) and ¢gp(x) are the vortex density of the upper and lower layers respec-
tively. In this paper, we shall only consider positive vorticity, g;(x) > 0 for
all x. ¥, and ¢p are the stream functions on the upper and lower layers
respectively. They are coupled through the relations:

ga = AwA—(FQ/JA—F’(ﬁB) and
g8 = Ayp+ (Fya— Fip).

where A denotes the horizontal Laplacian operator and F' is related to the
Rossby radius L, by

1
L;

Conserved quantities (1) and (2) follows from the separately conserved
circulation of each layer. The quantity H is the pseudo-energy of the vortex
system. I' is the angular momentum which is conserved as a consequence of
the rotational invariance of the infinite plane.

The important role of angular momentum in the confinement of the baro-
clinic vortices to a bounded region, highlighted in [1], is based on a rigorous
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mathematical result for the Heton Model in [10], which gives as sufficient
condition for boundedness of baroclinic vortex dynamics, the nonzero sum of
the total circulations of the two layers in the model.

2.1 Point vortex model

To allow numerical simulations of the two layer quasi-geostrophic model, we
need to discretise the vortex field. We represent ¢4 and gg with N discrete
point vortices in each layer. That is, there are 2N numbers of point vor-
tices. N of them belongs to the upper layer, each with vorticity wa = Qa/N;
and the remaining N to the lower layer, each having vorticity wg = Qp/N.
This representation automatically ensures that the total circulation of each
species is separately conserved. Using point vortices to represent a continu-
ous density distribution leads to a delta-function like vorticity profile. The
probability of locating a point vortex in a certain finite area near x can be
interpreted as the vortex density ¢(x) in that area. And as N — oo, we
expect this density to converge to the continuous vorticity densities ¢4 and
qB-
The discretised version of the pseudo-energy (3) would be:
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and that for the angular momentum (4):
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In the above, the subscript ¢ and j denotes vortices of upper layer while
m and n denotes the lower layer. Gp and Gr are the Green’s functions
for the barotropic, (ga + ¢g) /2 and baroclinic, (ga — gg) /2 vorticity field
respectively. They are given by/[1]:
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K, is the zeroth order modified modified Bessel function of the second kind.

2.2 Properties of H

In this section, we shall examine the actions of H in eqn (5) on a two vortex
system.

For two vortices far apart, the K, component of their interaction vanishes
and the Hamiltonian H tends to separate them even further. H then does
not distinguish between the two layers. Hence for a vortex system where
the number of vortices is small, and the distance between vortices is large,
the system then effectively behaves like a single species system with total
vorticity NV (wa + wg).

Next consider two vortices close to each other such that the effects of K
cannot be disregarded. Now vortex from the upper layer sees other vortices
from the same layer differently as those from the lower layer. Hence we
shall consider the inter-species interaction and the intra-species interaction
separately.

In the same species, both the log and K, terms of the Hamiltonian
again acts to push the vortices apart:

2
w
Hay (i) = ﬁ —logr;; + Ky (V 2F7‘ij>} .
However for different species, the log term causes the vortices to re-
pulse, while the K, term causes them to attract each other. Expanding the

K, term as a Taylor series about the separation between the two vortices,
Tim = 0, we get
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Since log r;,,, is negative, we conclude that the two components acts together
to cause a net Hamiltonian like —r2,. This produces a net repulsion between
two vortices of different species.

So in all cases, the Hamiltonian would cause every vortex to move away
from the other vortex. This can also be seen by observing that the gradient
of H(r) is always negative.

2.3 Equilibrium statistical mechanics

From the point of view of equilibrium statistical mechanics, the point vortices
can take any accessible configuration, but each with a certain probability.
The probability of a 2N vortex configuration zy is given by:

P (Z_zir) — exp {_ﬁH (Z_Jif) — /’['F (2_1;7)} ] (7)
[ exp {—BH (%) — i ()} dz

B and p are the Lagrange multipliers associated with the conservation of H

and I" respectively. When a vortex is located far from the origin, the quantity

' (#5) becomes large. From (7) we see that although the probability of a

vortex being found far from the origin is non-zero (except when py = o0), it

is exponentially small.

Since each vortex lives in a two dimension space, the whole model has
4N dimensions. To explicitly calculate the probability of each configuration
Zn we need to find the denominator of (7). This involves an integration
over 4N dimensions. Although it is conceivable that one could attempt to
calculate this quantity numerically by first restricting each two dimensional
plane to a large enough domain. Then discretise this domain into a mesh of
small finite areas, and finally add up all the contributions from all possible
permutations of vortices in this discrete mesh. This direct calculation would
require enormous computational power.

Instead, we proceed in a different direction. We use a Monte Carlo algo-
rithm to generate a Markov chain of states. And from this finite collection
of states, we deduce the equilibrium statistical properties of the model.

3 Monte Carlo algorithm

The implemented Monte Carlo algorithm is the standard Metropolis algo-
rithm. The algorithm begins with 2V vortices, N of each type, placed ran-



domly on the disk of arbitrary radius. The formulation of the model in terms
of point vortices ensures the conservation of total circulation in each layer.
While not strictly necessary, we set the number of vortices of species A equal
to the number of vortices of species B in all the simulations. The simulation
proceeds as follows.

Step 1: From the initial distribution, Z N, one vortex is picked randomly
from the 2N vortices.

Step 2: This vortex is then displaced in a random direction by a frac-
tion of a preset maximum displacement. We call this new distribution Z,.
This small displacement would cause the vortex distribution to have a new
augmented energy

E (zi,) = fH (z?v) + pl’ (z@) .
Step 3: This new distribution will be accepted or rejected based on the
following rule:

if exp(—AE)>1 , accept,

otherwise , reject.

AF is the difference of augmented energy between the new distribution
and the old distribution. [ is a uniformly distributed number between 0
and 1. If the new distribution is accepted, set 2y = 2z, and repeat step
1. Otherwise discard 27,;, and repeat step 1 with a new random vortex and
displacement. N cycles of the loop constitute one sweep. The loop is exited
after a large enough predetermined number of sweeps is reached.

The initial distribution is allowed to evolve for 100000 sweeps to relax,
after which the simulation is sampled after every 50 subsequent sweeps.

At each sampled configuration, properties of the N vortex configuration
like its energy, angular momentum and radial distribution was measured.
The mean radial distribution for the whole run is then obtained by taking
the average over all the sampled configurations.

These numerical simulations were carried out on a 2.2GHz Intel Xeon
processor computer with 1 GB memory.

When doing physical experiments, the energy and angular momentum of
the system is fixed (although it may be fluctuating with time). Then the
Lagrange multipliers § and p are measured using some measuring devices.



With this values, the physical quantities associated with each multiplier,
energy and angular momentum is inferred. However in doing Monte Carlo
simulations, we proceed the other way round. These multipliers are fixed,
and the energy and momentum of the system is the quantity that is measured
directly.

In all the simulations, we have set the Rossby radius to one.

4 Zero inverse temperature

We begin our discussions with the simplest case, 8 = 0. At zero inverse
temperature, there is no Hamiltonian interaction between vortices. Essen-
tially, each vortex in the system moves independently from the rest. With
no interaction between vortices, there is no force that keeps them apart. The
angular momentum however is still in effect, and it is easily seen that the
lowest augmented energy state has I' = 0 and £ = 0. This is attained when
all 2N vortices lies exactly on the origin.

In the Monte Carlo algorithm, the decision to accept or reject a proposed
move depends only its resulting change in energy. And since at each move,
only one vortex is displaced, the resulting change of energy is just

w (T'L?—new - ng—old) ’
where w is the vorticity of the displaced vortex. It does not depend on the
positions of any of the other vortices.
For zero (3, any move that brings a vortex closer to the origin would
always result in a lower augmented energy, and consequently the move would
be accepted.

4.1 Barotropic flow

The Heton model is termed barotropic when the vorticity of both layers
are equal, wq = wp. In fact at § = 0, the vortex model is solvable. The
probability of finding a vortex of strength w at r (distance measured from
the origin) would be:

_ exp(—wr?)
P(T) - T,



where 4 is the Lagrange multiplier associated with the angular momentum.
Z is a normalization factor

Z = /exp(—uwrQ)
R2

™

pw

Hence the vorticity profile of a single vortex is then

W r?
q = m €xp <—§) (8)
where we had introduced
9 1
LF=—.
Hw

This is a Gaussian distribution with standard deviation L. The expected
angular momentum of the single vortex would be:

C@ = [ orPo)

= 1 (9)
1
The above eqn (9) can also be obtained directly from (I" (¢)) = —0log Z/0u.
In doing the Monte Carlo simulations, we fix the Lagrange multiplier x, and
from there measure the energy of the system. However an alternative way
of looking at it; from the usual method of Lagrange multiplier is that the
angular momentum of the system is fixed at I'. The Lagrange multiplier is
then determined by substituting the solution (8) back into (6). Doing this
we would again obtain the same results

1
:LL_I-\'

Having N identical vortices would result in a vorticity profile with the same
spread, only N times stronger:

Nuw r?



The expected angular momentum of the system is N times greater than that
of the single vortex

(r (a")) = (1)

We see from (11) that in the discrete case of N vortices, the angular mo-
mentum depends on the number of point vortices used to model the system.
However for the angular momentum quantity to be meaningful, it should
only depend on the physical property of total circulation Q = Nw. Only Q)
appears in the continuous model, NV and w were artificially introduced during
the discretization of the continuous vortex profile. The way to correct this
would be to scale the Lagrange multipliers 5 and u appropriately by a factor
of N. But in this paper, we shall not be concerned with the scaling of the
multipliers. For here, we do not make any comparisons with varying N and
only a few cases of different N will be discussed.

N
.

4.2 Baroclinic flow

With two species of different vorticity, the flow is called baroclinic. However
at f = 0, the analysis above follows with little change. The most probable
vortex profile would two independent Gaussian:

Nwy r?
= e —_—
) L?Ll p L124 ’
Nwg < 7"2)
dp = eEXp\\ —75
wL% L3
where
1
Bo=
Hw 4
1
13, = —
Hwp

Table (1) gives a comparison of the vorticity profile obtained by the Monte
Carlo simulations using N = 1 with the exact results. 2 x 10° sweeps were
used and a typical run takes about 1400 seconds.
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‘ Height Stddev‘ (I ‘ % ‘ L ‘ Nw ‘

P u
1| 0.3201081 | 0.996964 | 0.9792 | 0.3183 1 1
2 | 0.638957 | 0.705566 | 0.4982 | 0.6366 | 0.7071 0.5
3
4

0.958247 | 0.576113 | 0.3327 | 0.9549 | 0.5774 | 0.3333
1.2749 | 0.499584 | 0.2497 | 1.273 0.5 0.25

Table 1: Comparison of Monte Carlo with exact values for § = 0 with N = 1.
In the Monte Carlo simulation, we used w4 = 1. The first three columns gives
the results on the Monte Carlo runs, while the last three are exact theoretical
results. The total number of sweeps was 2 x 10°.

Figure (1) shows the mean vorticity profile with ;4 = 2. For this and all
subsequent figures, we take radial symmetry of the profile to be given and
plot only the radial variations. The kurtosis, (o, of the profile was measured
using:

ﬁQ = ﬂ ’
M2
where p; is the i-th central moment. The discrete central moment is obtained
from

s = 225 T
(3 Z] ./I,"] I
where firstly we discretise the profile into a finite number of bins, and then
x; is the height of the radial profile at the bin of distance r; from the center.
The sum for the central moment is taken over all the non zero radial bins.

In the figure, we see that the Monte Carlo results closely match the exact
results.

Repeating this experiment with bigger N gives similarly accurate results.
The profiles obtained were similar Gaussians, with amplitudes as predicted
by (10). These results shall not be presented here.

Only when 8 = 0, can we make such comparisons. Explicit solutions for
other values of [ is not known. In fact for § = 0, what is taking place is
equivalent to a random walk.
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Monte Carlo results
Exact solution -------

Mean Vortex Density

Figure 1: Comparison of the mean vortex density as obtained from the Monte
Carlo simulations with the exact solution when wy =1, § =0, p = 2 and
N = 1. The two profiles coincide closely and are virtually indistinguishable.
The Monte Carlo results were obtained from samples gathered after 2 x 10°
sweeps. The Monte Carlo profile have a kurtosis of 3.0056, close to that of a
true Gaussian.
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5 Positive 3

The next set of experiments deals with positive 3. Figures (2)-(6) shows four
simulations with N =60, 5 =1and u = 1. wy is fixed at 1, while wg varies
from 1 to 4. Each simulations involves 5 million sweeps took approximately
33000 seconds.

The vertical axis shows the vortex density of species B. The profile for
species A have been scaled to match that of species B.

We see that the two profiles differ; on average they are not equally mixed.
When wy # wpg, species A (having a higher circulation) is more concen-
trated in the central region, while species B shows a more flat profile. As
wp increases both vortex density profiles gradually flattens and its kurtosis
approaches 1.8, the value for a uniform distribution.

Furthermore, when w4 and wp are fixed as (3 increases, the vortices of both
species tends to a uniform distribution of the same radial support. Figure (7)
plots the distance of the furthest vortex from the origin in the final vortex
configuration against § for large values of 3.

6 Negative

For negative (3, the highest attainable energy configuration is for all the
vortices to clump together, forming a singularity at the origin. This is also
true for the case when 8 = 0.

However when

8
N max {wa,wp}’

B> -

the partition function Z(N) still remains finite, and hence the probability
measure (7) is still valid. Therefore we would still have a finite probability
of a vortex configuration with non-zero support.

Recall that the inverse temperature is proportional to the derivative of
entropy vs. energy, and the more negative 7T is, the less hot it is. In sta-
tistical mechanics at negative temperatures, it is usually the maxima of the
free energy of the system, FF = E — T'S that determines the most probable
state; in other words, the most probable state usually corresponds to a state
of maximum entropy, whether the temperature is positive or negative. But
under certain conditions, this most probable state is close to maxima of the
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Figure 2: Mean vortex density from 60 vortex of species A and 60 of species
B. Both species have equal vorticityws = wg = 1. The values § =1, y = 1.
Since both species have the same vorticity, their mean density profile is also
the same. They are flatter than the Gaussian with a kurtosis of 2.2324 and
2.2396 for species A and B respectively.
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Figure 3: Vorticity profile forws = 1and wg = 2. =1 and 4 = 1. Compar-
ing with figure 2, both profiles are significantly flattened despite the vortex
strength of species A being unchanged. Kurtosis of species A = 2.1548, and
species B = 1.9798.
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Mean Vortex Density (Species A/B)

Figure 4: Vorticity profile for wq =1 and wg = 3. f =1 and p = 1. Kurtosis
of species A = 2.1221, and species B = 1.8920.
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Mean Vortex Density (Species A/B)

Figure 5: Vorticity profile for wq =1 and wg =4. f =1 and p = 1. Kurtosis
of species A = 2.0950, and speciesB = 1.8560.
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energy E. We have seen that for low positive temperatures, this approxima-
tion principle holds in the Onsager Point Vortex gas, and it is expected to
be valid also for the Heton Vortex Gas at low positive temperatures.

This situation arises near the singularity at extremal negative tempera-
ture 7p: the distribution of vortices all lumped together near the singularity
has very low entropy S, but extremely high energy; any other macro-state
will have larger entropy but smaller energy, leading to a smaller free energy,
because the extremal temperature 7; has the smallest allowed numerical
value when it is negative. Moreover, its temperature 7; being negative and
of the smallest allowed numerical value means that the derivative of entropy
with respect to the energy is negative, and a decrease of energy will lead to
the largest corresponding increase of entropy for a neighboring macro-state
at a slightly more negative value for 7. Thus, for negative temperatures
which have large numerical values, the energy of the most probable state
must decrease as the entropy increases, and the approximation principle is
not valid.

The simulation results in the following subsections support the above
scenario of a continuous change from the energy dominated state at the
extremal negative temperature to a balanced combination of higher entropy
and lower energy states at negative temperatures with large numerical values.

We do not have a finite temperature cutoff for positive temperatures,
and the above approximation principle holds for different reasons than here.
At very low positive temperatures, minimizers of the free energy are iden-
tical to minimizers of internal energy but they are also entropy maximizers
since these macro-states are essentially radial uniform states. As the positive
temperature increases, the minimizers of the free energy shifts continuously
towards the Gaussian profiles which have lower entropy and higher energy.
The numerical results on the Heton Gas at positive temperatures in sections
4 and 5 support this overall picture.

6.1 Barotropic flow

Figures (8) and (9) shows the mean vortex density and the final distribution
of a barotropic Monte Carlo simulation with NV =80, p =1 and 8 = —0.1.
In this run the vortex strengths wy = wp = 1. As expected both species has
the same radial profile. A Gaussian plot for 5 = 0 is included for comparison.
When [ is negative, the vortex density profile is more concentrated in the
central region compared to the Gaussian. This is also reflected in the kurtosis

20



of the density profile which is greater than three.
The simulation was carried out for two million sweeps and took about
12000 seconds.

6.2 Baroclinic flow

Figures (10) and (11) shows the mean vortex density and the final distribution
of a baroclinic Monte Carlo simulation with the same parameters as before:
N =80, p =1 and = —0.1. But in this run we have wy = 1 and wg = 2.
The vortices of both species becomes more concentrated near the origin as
wp increases.

In the regime

8
N max {wa,wp}’

b <

the partition function is not well defined. However we can still do Monte
Carlo runs with such large negative (3; after all its just a matter of changing
a variable for the computer simulation. And knowing that the system will
be ill behaved, the result should not be taken too seriously. If we insist on
doing so, we get a vortex configuration with all the vortices moving closer
and closer together until the simulation reaches the total number of sweeps
or until the simulation breaks down due to a large negative energy that is
beyond the computer’s capability to handle.

7 Conclusion

We conclude with a few specific physical points which are worth following up
in future works. They are:

(A) As the vortex strength of species B gets progressively larger with
respect to species A (cf. Figures 2 - 6), the equilibrium distributions of both
species become closer to a flat-top radial distribution.

(B) For any fixed ratio of vortex strengths that is not too extreme, the si-
multaneous appearance of both canonical types of vorticity distributions at a
single positive temperature is remarkable. By canonical types we refer to the
two main types of equilibrium vorticity distributions in the Onsager vortex
gas on an unbounded plane, namely, the Gaussian-like radial distribution for
relatively low values of § and the nearly flat-top radial distribution at higher
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Figure 8: Mean vortex density of 88 2vortices per species, with a negative
B = —0.1and p = 1. Both species have the same vorticity, wqg = wg = 1. The
dotted lines gives the Gaussian solution when § = 0. Kurtosis of A = 3.1488
and kurtosis of B = 3.2352.
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Figure 10: Mean vortex density of 60 vortices per species with a negative
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Figure 11: The distribution of 120 vortices with 4 = 1 and a negative § =
—0.1 after 2 million sweeps. Species A (‘x’) has vorticity ws = 1 while for
species B (‘+’), wg = 2. The ‘4’ vortices are more highly concentrated in
the central region.
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values of 5. In the Onsager vortex gas as well as in its exact mean field
theory, the Gaussian type was found analytically, but the flat-top type was
discovered in numerical solutions [11] of the mean field equations. We refer
the reader to recent papers [11] and [12] which discuss these canonical types
in detail. In particular, [12] gives a rigorous energy variational formulation
for the flat-top radial solutions within a low temperature approximation to
the mean field equations for the Onsager vortex gas. This approximation
is based on the idea that at low positive temperatures, the Helmholtz Free
energy, ' = E — TS, is dominated by the augmented internal energy E.

(C) For any fixed vortex strength ratio, the radial profiles of both species
tend towards the flat-top uniform one as the positive inverse temperature
increases.

(D) The power law of the radii of vorticity supports suggests that they are
proportional to the square root of the product of the respective circulations
with the ratio of inverse temperature to chemical potential

R[22

1
As a direct result, this extended power law for the radii allows us to sim-
ulate the Heton statistics in any disk, at all values of the energy and total
circulations, provided we are free to choose the chemical potential.

(E) The rigorous proof of such a power law (at least for low positive
temperatures) can be constructed by minimizing an augmented energy func-
tional, along the same lines as the proof in the Onsager Vortex Gas Problem.
Similar to that proof, this will likely require a technical lemma on the ex-
istence of radially symmetric and compactly supported minimizers of the
augmented energy functional. One should be able to prove such a lemma
using techniques from the Direct Method of the Calculus of Variations.

(F) This power law for the radial extent of the cold temperature and po-
tential vorticity anomalies confirms that in a preconditioned barotropic gyre
with sufficiently strong cyclonic signature, the baroclinic cooling is localized
in an unbounded open ocean. DiBattista - Majda discovered a length scale
L, for the radial extent which is directly related to the angular momentum
in the barotropic component, and to the 5 = 0 exact solution. Our power
law with exponent % in the quantity % extends the relationship they found
between L, and angular momentum, to the 5 > 0 region. Through the
power law’s dependence on total circulations, inverse temperature beta and
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chemical potential y, we are able to predict the radial extent of the equilib-
rium cold temperature and potential vorticity anomalies as a function of the
mean kinetic energy and mean baroclinic angular momentum in the localized
open ocean convection site. These quantities can be related back to the me-
teorological conditions that preconditioned the ocean site, such as the wind
stress that caused the cyclonic gyre, and the cold air reservoir for potential
vorticity anomaly. In short, the doubly - canonical Gibbs ensemble used in
the DiBattista - Majda model is optimal for the modeling of the most prob-
able localized response of a stratified rotating flow interacting with a heat
bath and an angular momentum reservoir simultaneously.

As discussed earlier, the Metropolis algorithm we used simulates this
interaction between the flow and the heat and angular momentum baths
through prescribed values of the temperature and chemical potential. The
qualitative agreement between our results, namely the power law, and sev-
eral numerical simulations (and experiments) showing that with a strong
enough barotropic rim current, baroclinic instabilities can be suppressed in
the dynamics of a rotating stratified system, motivates further work on the
variational formulation and rigorous derivation of this numerical power law.
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