Rensselaer Polytechnic Institute | About RPI | Academics | Research | Student Life | Admissions | News & Information
*
* Site Navigation
Mathematical Sciences
*
Peter Kramer
*
Mathematical Sciences
Peter Kramer

Professor
Ph.D. Princeton University
Applied and Computational Mathematics


Research Areas  (summary descriptions):
  • Statistical mechanics of swimming microorganisms
  • Intracellular transport
  • Stochastic dynamics on neuronal and other networks
  • Stochastic network modeling in epidemiology
  • Stochastic modeling in ecology
  • Statistical aspects of multiscale computing
  • Nonlinear Wave Turbulence

Selected Publications  (full list with links):

  • K. A. Newhall, M. S. Shkarayev, P. R. Kramer, G. Kovacic, and D. Cai, "Synchrony in stochastically driven neuronal networks with complex topologies," Physical Review E 91 (2015): 052806.

  • J. C. Latorre, P. R. Kramer, and G. A. Pavliotis, "Numerical Methods for Computing Effective Transport Properties of Flashing Brownian Motors," Journal of Computational Physics 257A (2014):  57-82.  

  • O. Kurbanmuradov, K. Sabelfeld, and P. R. Kramer, "Randomized Spectral and Fourier-Wavelet Methods for Multidimensional Gaussian Random Vector Fields," Journal of Computational Physics 245 (2013):  218-234.

  • K. A. Newhall, E. P. Atkins, P. R. Kramer, G. Kovacic, and I. R. Gabitov, "Random Polarization Dynamics in a Resonant Optical Medium," Optics Letters 38 (6), (2013):   893-895. 

  • J. C. Latorre, G. A. Pavliotis, and P. R. Kramer, "Corrections to Einstein's relation for Brownian motion in a tilted periodic potential," Journal of Statistical Physics 150 (4), (2013):  776-803. 

  • E. P. Atkins, P. R. Kramer, G. Kovacic, and I. R. Gabitov, "Stochastic Pulse Switching in a Degenerate Resonant Optical Medium," Physical Review A 85 (2012), 043834.  
  • S. A. McKinley, A. Athreya, J. Fricks, and P. R. Kramer, "Asymptotic Analysis of Microtubule-Based Transport by Multiple Identical Molecular Motors,Journal of Theoretical Biology 305 (2012):  54-69. 

  • P. R. Kramer, C. S. Peskin, and P. J. Atzberger, "On the foundations of the stochastic immersed boundary method," Computer Methods in Applied Mechanics and Engineering, 197(25-28), 2008: 2232-2249 

  • P. J. Atzberger, P. R. Kramer, and C. S. Peskin, "A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales," Journal of Computational Physics 224 (2), 2007: 1255-1292.

  • L. J. Borucki, T. Witelski, C. Please, P. R. Kramer, and D. Schwendeman, "A theory of pad conditioning for chemical-mechanical polishing,"  Journal of Engineering Mathematics, 50 (1), 2004:  1-24.

  • A. J. Majda and P. R. Kramer, "Simplified models for turbulent diffusion:  Theory, numerical modelling and physical phenomena," Physics Reports, 314 (4-5), 1999: 237-574.


Course Information (lecture notes and homework problems from previous semesters):


Mathematical and Interdisciplinary Contest in Modeling (MCM/ICM)
Graduate Student Mathematical Modeling Camps (GSMMC) and Mathematical Problems in in Industry (MPI) Workshops
Mathematical-Related Amusements and some Personal Notes


Contact Information

Peter Kramer
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
110 8th Street
Troy, New York 12180

Phone: (518) 276-6896
Fax: (518) 276-4824
Email: kramep@rpi.edu

*
*

*

 
Rensselaer Polytechnic Institute > Academics & Research > School of Science > Mathematical Sciences:
Home | Undergraduate | Graduate | Faculty | Research | Events | News | Contacts

Copyright 2006 Rensselaer Polytechnic Institute

*
*
Rensselaer   Rensselaer Polytechnic Institute (RPI)
110 8th Street, Troy, NY 12180   (518) 276-6000