Homework 2

Problem 1. [Strogatz, 2.6.2] (No periodic solutions to $\dot{x} = f(x)$) Here’s an analytic proof that periodic solutions are impossible for a vector field on the line. Suppose on the contrary that $x(t)$ is a nontrivial periodic solution, i.e. $x(t) = x(t + T)$ for some $T > 0$, and $x(t) \neq x(t + s)$ for all $0 < s < T$. Derive a contradiction by considering

$$\int_0^T f(x) \frac{dx}{dt} dt.$$

Problem 2. [Strogatz, 2.7.3] Plot the potential function $V(x)$ for the following vector field and identify all the equilibrium points and their stability:

$$\dot{x} = \sin(x).$$

Problem 3. [Strogatz, 3.1.2] For the following system, sketch all the qualitatively different vector fields that occur as r is varied. Show that a saddle-node bifurcation occurs at a critical value of r, to be determined. Finally, sketch the bifurcation diagram of fixed points x^* versus r:

$$\dot{x} = r - \cosh x.$$

Problem 4. [Strogatz, 3.4.2] For the following system, sketch all the qualitatively different vector fields that occur as r is varied. Show that a pitchfork bifurcation occurs at a critical value of r, to be determined. Finally, sketch the bifurcation diagram of fixed points x^* versus r:

$$\dot{x} = rx - \sinh x.$$

In the following systems, find the values of r at which bifurcations occur, and classify those as saddle-node, transcritical, or pitchfork. Finally, sketch the bifurcation diagram of fixed points x^* vs. r.

Problem 5. [Strogatz, 3.4.9] $\dot{x} = x + \tanh(rx)$.

Problem 6. [Strogatz, 3.4.10]

$$\dot{x} = rx + \frac{x^3}{1 + x^2}.$$