Advances and applications of lattice
supersymmetry

Joel Giedt

Fine Theoretical Physics Institute
University of Minnesota
Several motivations exist for efforts to formulate supersymmetric field theories on a lattice. It is difficult to formulate these theories in a way that avoids fine-tuning of counterterms (besides any bare/physical tuning that already occurs in the continuum). Nevertheless, there have been many promising formulations developed of late. But to what use should/would we put them? Look to motivations.
Say what is meant by

\[Z[S] = \int \exp(-S). \]

At a formal level we know

\[Z[S; a] = \int_{D(a)} [d\mu(\phi; a)] \exp(-S[\phi; a]) \]

and \(a \to 0 \) limiting sequence for ingredients.
Definition

- Due to universality, there is no unique definition of $Z[S; a]$.

- But one wants a classification based on the answer to:
 - Perturbative defn.: no CT / local CTs / anomaly
 - Nonperturb. defn.: no CT / local CTs / anomaly

- Favorite answer: no CT.
Q-exact susy-QM:

\[S = QX, \quad Q^2 = 0. \]

Monte-Carlo evidence (spectrum degeneracy, Ward identities) [Catterall, Gregory 00].

All-order perturbative proof [JG, Poppitz 04].

Nonperturbative proof by transfer matrix calculation [JG, Poppitz 04].

Note: Q-exact → cancellations → no CT.
Spectrum degeneracy in Q-exact SQM. Taken from [Catterall, Gregory 00]. $L = Na = \text{fixed.}$
No CT examples

- **Q-exact 2d Wess-Zumino** (a.k.a. $\mathcal{N} = 2$ Landau-Ginsburg) [Elitzur, Schwimmer 83] [Sakai, Sakamoto 83]:
 - All orders perturbative proof [JG, Poppitz 04].
 - Similar to Q, Q^\dagger-preserving spatial [Elitzur, Schwimmer 83].
- Note: Q-exact \rightarrow cancellations \rightarrow no CT.
- Various Monte Carlo evidence: (spectrum degeneracy, Ward identities, R-symmetry) [Beccaria, Curci, D’Ambrosio 98] [Catterall, Karamov 01-02] [JG 05]
$D_{UV} \geq 0$ diagrams
From [Curci, Veneziano 86] we know that \(\mathcal{N} = 1 \) 4d SYM with Ginsparg-Wilson fermions require no CTs.

Overlap-Dirac was proposed [Narayanan, Neuberger 95] and sketched [Maru, Nishimura 97].

But LO simulation studies, such as glueball spectra, have yet to be attempted.
$\mathcal{N} = 1$ 4d SYM w/ chiral fermions

- IR effective theories have been proposed by continuum theorists [Veneziano-Yankielowicz and extensions by Sannino et al., Gabadaze et al., Louis et al.]; it would be nice to test them!

- Domain-wall-Dirac fermions were proposed [Nishimura 97] [Neuberger 98] [Kaplan, Schmaltz 99] and briefly studied [Fleming, Kogut, Vranas 00].

- It deserves another push!
No CT examples

- Deconstruction models (quiver lattice, orbifold matrix model), various extended SYM in 2d, 3d and 4d [Cohen, Kaplan, Katz, Unsal 03].
 - The 2d examples definitely have no fine-tuning in perturbation theory.
 - For the $d > 2$ examples, it is less clear what really happens.
 - If $O(d)$ is recovered, an interesting susy theory is obtained.

- Q-exact compact (2,2) SYM in 2d [Sugino 03-06]. No fine-tuning in perturbation theory.
Extended SYM in 2d & 4d [D’Adda, Kanamori, Kawamoto, Nagata 05].

Modified Leibnitz rule for susy variation:

\[s_A[\Phi(x_1)P(x_2, \ldots)] = s_A[\Phi(x_1)]P(x_2, \ldots) \]
\[+ (-)^F(\Phi)\Phi(x_1 + a_A)s_A[P_2(x_2, \ldots)]. \]

Action with 4 equivalent forms:

\[S' = \sum_x \text{Tr} \ s\tilde{s}s_1s_2\Psi_{x,x} = -\sum_x \text{Tr} \ \tilde{s}s_1s_2\Psi_{x,x} \]
\[= \sum_x \text{Tr} \ s_1s_2\tilde{s}\Psi_{x,x} = -\sum_x \text{Tr} \ s_2s_1\tilde{s}\Psi_{x,x}. \]
Nilpotency:

\[s^2 = \tilde{s}^2 = s_1^2 = s_2^2 = 0. \]

Thus action invariant under noncommutative (2,2) susy.

Renormalization needs more study. Does noncommutativity matter?
Other no CT examples/claims

- Twisted (Q-exact) geometrical (2,2) SYM in 2d [Catterall 04-06]. MC data seems to indicate no need for CTs.

- 4d WZ with GW fermions [Bonini, Feo 04-05]. Nonlinear, perturbative definition of Q.

- Twisted (Q-exact) nonlinear σ model, (2,2), 2d [Catterall, Ghadab 03] [JG, Poppitz 04]. MC data seems to indicate no need for CTs [Catterall, Ghadab 06].
Nonholomorphic woes

- Continuum susy tricks usually partly fail to determine IR eff. theory.

- Schematically:

\[
\int d^4 \theta \ K(\Phi, \bar{\Phi}) + \left[\int d^2 \theta \ W(\Phi) + h.c. \right]
\]

- \(W \) not renormalized in perturbation theory.

- \(W \) sometimes completely determined, once symmetries accounted for.

- Generically none of these nice features hold for \(K \).
Lack of control over nonholomorphic data is distressing.

So-called supersymmetry-breaking soft-terms largely determine superpartner spectra and couplings for the MSSM.

Depend on Kähler potential K.
Lattice Monte Carlo simulations would, as a first step, give us a handle on vevs ϕ_0 of scalars, and the spectrum of light states.

This constrains:

$$V_\phi, \quad V_{\phi\phi}, \quad V_{\phi\bar{\phi}}$$

evaluated at ϕ_0.

Both the Kähler potential K and superpotential W play a role in the scalar potential:

$$V = K^{k\ell} W_k \bar{W}_\ell,$$

where $K^{k\ell}$ is the inverse of the Kähler metric

$$K_{k\ell} = \partial^2 K / \partial \phi^k \partial \bar{\phi}^\ell$$

and

$$W_k = \partial W / \partial \phi_k, \quad \bar{W}_\ell = (W_\ell)^*.$$
Extracting effective K

- Hypothesize effective Kähler potential K.
- Use known effective superpotential W.
- Match microscopic lattice and IR effective lattice data, to fit “phenomenological” constants in K.
These proposals illustrate how lattice simulations have the potential to teach us something about nonperturbative renormalization of nonholomorphic quantities.

Work in progress (w/ Catterall): Determine (2,2) 2d twisted NLσM IR effective theory that can reproduce the following (microscopic) constrained effective potentials (of (2,2) 2d SU(2) SYM)...
Constrained effective potential

Potential for $|\phi|$ in $(2,2) \ SU(2)$ SYM, using Catterall’s construction and simulation code.
Constrained effective potential

Potential for $|\text{Tr } \phi^2|$ in $(2,2)$ $SU(2)$ SYM, using Catterall’s construction and simulation code.
Susy breaking

- Third motivation: improve our understanding of **dynamical supersymmetry breaking**.
- Strong susy dynamics often invoked in models of soft susy breaking for **MSSM**.
- Any improvement of our understanding would be helpful.
A simple theory where ground state susy is not yet fully understood.

3d reduction of 4d $\mathcal{N} = 1$ SYM.

Unanswered questions arise in [Affleck, Harvey, Witten 82].

Instanton-generated potential for modulus field ϕ (nonpert. renormalization), but uncertainty for small ϕ.

Only known susy vac. is at $\phi \to \infty$.

Is there a susy vacuum near origin?
Use parity-preserving overlap-Dirac formulation, similar to 3d $\mathcal{N} = 1$ of [Maru, Nishimura 97]: no CT fine-tuning?

Simple content (1 gluon, 1 adj. Maj. fermion, 1 adj. real scalar) \Rightarrow efficient.

Addition of matter leads to very interesting vac. dynamics, even for the $U(1)$ gauge theory [Aharony, Hanany, Intriligator, Seiberg, Strassler 97] [de Boer, Hori, Oz 97]
Quantum gravity

- Evolving understanding of relationship between SYM and string/M-theory.
- Nonperturbative formulation of string/M-theory in general backgrounds is still lacking.
- But there are recent successes for special backgrounds:
Nonperturbative string theory

- D-branes [Polchinski 95].
- M(atrix) theory [Banks, Fischler, Shenker, Susskind 96] [Ishibashi, Kawai, Kitazawa, Tsuchiya 96]
- AdS/CFT correspondence [Maldacena 97] [Gubser, Klebanov, Polyakov 98] [Witten 98]
- PP-wave limit [Metsaev 01] [Metsaev, Tseytlin 02] [Blau, Figueroa-O’Farrill, Hull, Papadopoulos 01] [Berenstein, Maldacena, Nastase 02]
Nonperturbative string theory

- Note that I include nontrivial semiclassical under what I call "nonperturbative."
- It is of considerable interest to study these nonpertubative formulations in relation to SYM on the lattice.
- E.g., Matrix theory and AdS/CFT expressed in terms of dimensionally reduced SYM.
The nontrivial SYM vacuum dynamics takes on a gravitational meaning.

Everybody has heard about $AdS_5 \times S^5$.

A far more interesting example is the Klebanov-Strassler construction [00].

It is based on the Klebanov-Witten construction:

$$AdS_5 \times T^{1,1}.$$

KW dual gauge theory: $\mathcal{N} = 1$ SCFT.
Conifold

- Type IIB theory is formulated on:

 4d Minkowski \(\times \) conifold.

- The conifold has a cone-like geometry, with \(T^{1,1} \) base:
$T^{1,1}$ is a quotient manifold:

$$T^{1,1} = [SU(2) \times SU(2)]/U(1)$$

The “1, 1” denotes the $U(1)$ quotient:

$$H = (\sigma_3 \otimes 1) + (1 \otimes \sigma_3).$$
Warping spacetime

- A stack of N_c D3 branes is placed at the tip, where the size of the base shrinks to zero.
- These branes are gravitating. They backreact on the geometry, warping it.
- Not too far from the branes, the geometry is $AdS_5 \times T^{1,1}$.
One advantage: Type IIB SUGRA on $AdS_5 \times T^{1,1}$ only preserves 8 Killing spinors, whereas

Type IIB on $AdS_5 \times S^5$ preserves 32 Killing spinors.

In the dual gauge theory, we get $\mathcal{N} = 1$ SCFT rather than $\mathcal{N} = 4$ SCFT.
An $\mathcal{N} = 1$ SCFT is a much more promising start, being closer to the real world.

There is a singularity at the tip of the conifold.

In the dual gauge theory, this is reflected by the absence of an IR cutoff.
Klebanov-Strassler resolve the singularity with the deformed conifold.

They show that it is equivalent to confinement in the IR of the dual gauge theory.
Conformal symmetry breaking

- On the gravity side of the duality, this breaks half the Killing spinors.
- On the gauge theory side, this breaks the fermionic conformal charges, reducing to $\mathcal{N} = 1$ SUSY gauge theory.
- Now we are “very close” to the real world.
- I.e., semi-realistic susy AdS_5 models.
D7 probes = flavors

- Introduction of N_f D7 probe branes allows for a weakly coupled $U(N_f)$ gauge theory in the dual.

\[g_f^2 \sim (\text{volume})^{-1}. \]

- Embedding for D7s can generate bare masses for “quarks” of dual gauge theory.

- Low energy partons are really bound states, very much like in technicolor.

- Here, the $U(N_c)$ associated with the D3 branes is the technicolor group.
Recently, studies of the low energy effective 4d and 5d theories have been conducted. [Sakai, Sonnenschein 03] [Kuperstein 04] [Levi, Ouyang 05] [Gherghetta, JG 06].

In the latter work, we also imagined a regulator in the UV, following [Giddings, Kachru, Polchinski 02].

This occurs by capping off the conifold with a compact Calabi-Yau manifold far from the tip.
The CY and the KS tip are, respectively, to be thought of as refinements of the UV and IR branes of, say, Randall-Sundrum 1.

Potential—though challenging—interplay between warped extra dimension models, AdS/CFT, and lattice SYM.
There are many more generalizations of AdS/CFT.

In particular, AdS_3/CFT_2 may be accessible through lattice studies.

The duality in the (4,4) 2d SQCD (D1-D5 system) is under study using a deconstruction lattice susy construction with matter [JG 06].
The (4,4) lattice with matter is a generalization of the recent (2,2) SQCD constructions of Kaplan (see talk) and Endres [06].

I now have a construction with 2 exact supercharges and only site/link/diagonal fields.
Conclusions

- Although it is challenging to write down supersymmetric lattice field theories that have a good quantum continuum limit, some examples do exist.

- A wealth of exciting applications await.

- At least for lower dimensional examples, certain nonperturbative features can be studied on the lattice with results that are of broad and of current interest.