First-principles phase diagram calculations for the rocksalt-structure quasibinary systems TiN-ZrN, TiN-HfN and ZrN-HfN

Z. T. Y. Liu1, B. P. Burton2, S. V. Khare1*, D. Gall3

1Department of Physics, University of Toledo, Toledo, OH 43606, USA
2Materials Measurement Laboratory, Metallurgy Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
3Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

*Corresponding author: sanjay.khare@utoledo.edu

Abstract

We have studied the phase equilibria of three ceramic quasibinary systems Ti_{1-x}Zr_xN, Ti_{1-x}Hf_xN and Zr_{1-x}Hf_xN (0 ≤ x ≤ 1) with density functional theory, cluster expansion and Monte Carlo simulations. We predict consolute temperatures (T_C), at which miscibility gaps close, for Ti_{1-x}Zr_xN to be 1400 K, for Ti_{1-x}Hf_xN to be 700 K, and below 200 K for Zr_{1-x}Hf_xN. The asymmetry of the formation energy ∆E_f(x) is greater for Ti_{1-x}Hf_xN than Ti_{1-x}Zr_xN, with less solubility on the smaller cation TiN-side, and similar asymmetries were predicted for the corresponding phase diagrams. We also analyzed different energetic contributions: ∆E_f of the random solid solutions were decomposed into a volume change term, ∆E_{vc}, and a chemical exchange and relaxation term, ∆E_{xc-relx}. These two energies partially cancel one another. We conclude that ∆E_{vc} influences the magnitude of T_C and ∆E_{xc-relx} influences the asymmetry of ∆E_f(x) and phase boundaries. We also conclude that the absence of experimentally observed phase separation in Ti_{1-x}Zr_xN and Ti_{1-x}Hf_xN is due to slow kinetics at low temperatures. In addition, elastic constants and mechanical properties of the random solid solutions were studied with the special quasirandom solution approach. Monotonic trends, in the composition dependence, of shear-related mechanical properties, such as Vickers hardness between 18 to 23 GPa, were predicted. Trends for Ti_{1-x}Zr_xN and Ti_{1-x}Hf_xN exhibit down-bowing (convexity). It shows that mixing nitrides of same group transition metals does not lead to hardness increase from an electronic origin, but through solution hardening mechanism. The mixed thin films show consistency and stability with little phase separation, making them desirable coating choices.
1. Introduction

Alloying has long been used to tune material properties. Studies of mixing typically focus on the stabilities of ordered intermediate ground state phases, end members, and the miscibility gaps between them. Some intermediate phases may be stable up to high temperatures, and may be optimal for certain applications. Disordered solid solutions may be desirable for applications that call for properties that are smoothly tuned by alloying.

A general theoretical goal has been the investigation of phase equilibria in ceramics. The key objective is to construct complete thermodynamic models to predict phase relations without resorting to experimental input. Such a first-principles approach has recently been developed. The cluster expansion (CE) formalism1–6 fits the calculated formation energies of a small number of structures (~50-100) yielding a set of effective cluster interactions (ECIs) for pairs, triplets, quadruplets, etc. The energies to be fitted can be calculated with empirical potentials or first-principles approach such as density functional theory (DFT). This approach has been used to study a diverse set of material systems including alloys7–14, semiconductors15–18, ionic compounds19–22, and minerals23–26 with satisfactory results that compare favorably with experiments.

Rocksalt-structure early transition metal (TM) nitrides are known for their outstanding refractory properties such as high melting point, high hardness, high corrosion and oxidation resistance27–31. These nitrides, especially Group 4 TM nitrides, are relatively easy to fabricate with thin film deposition techniques, due to their large formation energies32. The simple structural prototype, rocksalt, turns out to be the most stable one of many other structures32. In contrast, late TM (platinum group metals) nitride formation has to rely on high-temperature and high-pressure conditions33. Adding to their individual superior properties, mixing them offers an additional promising route to more diverse material behaviors34–46. Here, we focus on using CE to study quasibinary mixing of nitrides of the Group 4 TMs, Ti, Zr and Hf; i.e. the systems Ti\textsubscript{\textit{1-x}}Zr\textsubscript{x}N, Ti\textsubscript{\textit{1-x}}Hf\textsubscript{x}N and Zr\textsubscript{\textit{1-x}}Hf\textsubscript{x}N (0 \(\leq x \leq 1\)). Cation radii47 for six-coordinated Ti4+, Zr4+ and Hf4+ are 0.61 Å, 0.72 Å and 0.71 Å, respectively. These radii differences, Ti4+ from Zr4+, and Ti4+ from Hf4+, are large, and both the cations and anions are simple units, rather than groups like CO\textsubscript{2}\. Hence, we anticipate simple mixing behavior and miscibility gaps. Phase separation is expected to happen when the solid solution is annealed below the consolute temperature (\(T_C\)). Such behavior was observed in Ti\textsubscript{\textit{1-x}}Al\textsubscript{x}N at 900-1000 °C44,48,49. However, experiments on Ti\textsubscript{\textit{1-x}}Zr\textsubscript{x}N, including cathodic arc plasma deposited50 and dc reactive magnetron sputtered51 samples yielded single-phase materials after annealing at 600-1200 °C for hours; clearly, more experimental work would be appropriate. This discrepancy demands a better look at the driving force for decomposition, characterized by the difference of the undercooling annealing temperature from \(T_C\). Previous estimates of \(T_C\) based on random solid solution mixing enthalpy and analytical entropy expressions, as high as 5000 K50, call for more developed approaches that correctly consider configurational disorder and lattice vibrational free energy contributions at various temperatures. The CE formalism, coupled with subsequent Monte Carlo (MC) simulations, offers such an approach.
In this work, we study energy scales of the three systems and phase boundaries. We select the end members TiN, ZrN, HfN and ordered mixed structures to examine the electronic origin of instability. We analyze different contributions to random solid solution formation energies and explain the asymmetries of calculated miscibility gaps. For the nitride systems mentioned we set out to answer these questions: how the miscibility gaps appear and how they influence the decomposition process. In addition, we use the special quasirandom structure (SQS) approach52–54 to independently model random solid solutions and compute their elastic constants. Comparison is made with results from the CE method and trends of mechanical properties are identified. We emphasize that although the SQS approach provides easy access to supercells that can be computed with DFT, it is designed only to model the high temperature, random solid solution configurations. In the SQS approach, entropy effects, under the ideal mixing assumption, and enthalpy corrections according to experiments need to be considered with analytical expressions to obtain approximate phase boundaries. On the other hand, the CE formalism is the only purely theoretical method to rigorously predict the full-temperature-range phase stability.

2. Computational Methods

We performed \textit{ab initio} DFT computations using the Vienna Abinitio Simulation Package (VASP)55–58 with the projector-augmented wave method (PAW)59,60 and Purdew–Burke–Ernzerhoff (PBE) generalized gradient approximation (GGA)61,62. We selected the potentials of Ti\textsubscript{sv}, Zr\textsubscript{sv}, Hf\textsubscript{pv} and N, where “\textsubscript{sv}” denotes that the semi-core s and p electrons are also included, while “\textsubscript{pv}” specifies the semi-core p electrons. The plane wave energy cutoff was chosen to be 520 eV to ensure correct cell volume and shape relaxations. The k-point meshes were created with k-points per reciprocal atom (KPPRA) of 4000. Methfessel-Paxton order 1 smearing was used with a sigma value as small as 0.1 eV. The convergence criterion was set to 10^{-5} eV in energy during the electronic iterations. For structural optimization, the cell volume, shape and atomic positions were allowed to relax until stress was minimized and forces on any atom were below 0.02 eV/Å.

To obtain equations of state (EOS’s) for TiN, ZrN and HfN, we picked 5 volume points in each case, fitted the total energies to the Birch-Murnaghan EOS63, and derived the equilibrium volumes, energies and bulk moduli32,64.

Phase diagrams were generated for Ti\textsubscript{1-x}Zr\textsubscript{x}N, Ti\textsubscript{1-x}Hf\textsubscript{x}N and Zr\textsubscript{1-x}Hf\textsubscript{x}N using the Alloy Theoretic Automated Toolkit (ATAT)65–68. Included in ATAT, the MIT Ab-initio Phase Stability (maps)65,66 code was used to generate the energy landscapes and CEs. The Easy Monte Carlo Code (emc2 and phb)67,68 was used to perform MC simulations to obtain the phase diagrams. With well-converged CEs, a box of $12 \times 12 \times 12$ 2-atom unit cells (1728 exchangeable sites) was chosen in the semi-grand canonical (SGC) ensemble simulations, in which chemical potential and temperature (T) can be given as external conditions. Chemical potential is defined as $\mu = \left(\frac{\partial G}{\partial n_i}\right)_{T,n_i\neq i}$, where G is the Gibbs free energy, n_i is the number of atoms of species i in the simulation cell. In a binary system A\textsubscript{1-x}B\textsubscript{x}, $\mu = \mu_A - \mu_B$ is used as the input. For each μ and T point, sufficient MC passes were used to make sure the composition (x) reached a precision of 0.01. In a SGC ensemble the
composition jumps from one boundary to another, skipping the two-phase region in response to the change in μ. This jumping prevents the determination of spinodal curves in this ensemble.

Vibrational free energy contributions to the phase diagram were added through the stiffness vs length transferable force constants method (fitsvsl and svs code in ATAT66,69,70. It is based on the observation that bond length is typically a good predictor of bond stiffness for a given structure and given type of bonds. This approach has an advantage over the direct calculation of phonon contribution of all structures in a set because only a few structures are needed to derive the stiffness vs length relationship. Then this relationship is used to get the (a) force constants, (b) dynamical matrices, (c) phonon spectra and (d) vibrational free energies for all structures in the CE set. Quasi-harmonic approximation considering volume expansion was used. In our calculations, we selected 6 structures to extract the information on the force constants. The minimum distance between displaced atoms was set to 9 Å, displacement of the perturbed atom to 0.2 Å, strain of the maximum volume sampled 0.01 with 3 volume sampling points, and a linear fit was performed.

To independently obtain the physical properties of the random solid solution configurations, we employed SQS’s at three different compositions $x = 0.25$, 0.5 and 0.75 for each system. These structures can be readily obtained from the sqs2tdb code in ATAT. Each SQS contains 32 atoms (16 formula units, or 16 exchangeable sites).

We then used these SQS’s to compute the elastic constants. The routine implements the stress-strain linear relation, and is implemented in our open-source Python package pyvasp-workflow71, leveraging pymatgen72. Because finite cell models do not preserve the cubic symmetry of the random solid solution configurations, symmetrization needs to be performed on the 6×6 elastic matrix according to the symmetry operations of the rocksalt structure (space group $Fm\overline{3}m$, point group $m\overline{5}m$) to obtain only three independent elements C_{11}, C_{12} and C_{44} of the cubic crystal system. This was done using the pymatgen.analysis.elasticity package72.

3. Results and Discussion

3.1. Cell parameters of the end members

Table 1 shows the lattice parameters of TiN, ZrN and HfN. Volumes and total energies of the structures are given for the 2-atom formula unit. Experimental values are also listed73–75. Lattice parameters (a) and volumes compare well with experimental results with a small and consistent overestimation, while the bulk moduli (B) obtained from the EOS fitting show an underestimation. These deviations are due to the use of GGA in our DFT calculations and is a well-known consequence of this approximation32,64,33,76–79.

<table>
<thead>
<tr>
<th></th>
<th>a (Å)</th>
<th>V/f.u. (Å3)</th>
<th>E/f.u. (eV)</th>
<th>B (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiN</td>
<td>4.25</td>
<td>19.2</td>
<td>-19.63</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>4.241a</td>
<td>19.1a</td>
<td></td>
<td>318b</td>
</tr>
<tr>
<td>ZrN</td>
<td>4.60</td>
<td>24.3</td>
<td>-20.38</td>
<td>240</td>
</tr>
</tbody>
</table>

aExperimental values.
bApproximation.
<table>
<thead>
<tr>
<th></th>
<th>4.578(^a)</th>
<th>24.0(^a)</th>
<th>285(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfN</td>
<td>4.54</td>
<td>23.4</td>
<td>-21.76</td>
</tr>
<tr>
<td></td>
<td>4.525(^a)</td>
<td>23.2(^a)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Expt. from Ref. 73
\(^b\) Expt. from Ref. 74
\(^c\) Expt. from Ref. 75

3.2. Formation energy landscapes and electronic structures

Figure 1 shows the formation energy landscapes, $\Delta E_f(x)$ of Ti\(_{1-x}\)Zr\(_x\)N, Ti\(_{1-x}\)Hf\(_x\)N and Zr\(_{1-x}\)Hf\(_x\)N. Ground-state analyses were performed by using the CE to calculate ΔE_f for all symmetrically inequivalent structures with 16 or fewer cation sites. In addition, we evaluated ΔE_f of the structures corresponding to random solid solution configurations at different compositions and fitted them to a smooth curve.
Figure 1 Formation energy landscapes of (a) Ti$_{1-x}$Zr$_x$N, (b) Ti$_{1-x}$Hf$_x$N and (c) Zr$_{1-x}$Hf$_x$N. Energy values are per formula unit, i.e. per exchangeable site. Black markers and convex hull lines indicate ground states, blue markers indicate the structures calculated with DFT and used to obtain the CE, and green crosses indicate a 16-exchangeable-site ground-state analysis. Among the markers, hollow circles indicate DFT values, and crosses indicate CE-fitted values. Red curves indicate CE-fitted values of the random solid solution configurations, while purple squares and lines indicate DFT values and polynomial fit of the SQS’s.

The convex boundary of the energy landscape defined by the energies and compositions of structures calculated by DFT constitute the convex hull. In Ti$_{1-x}$Zr$_x$N and Ti$_{1-x}$Hf$_x$N, all non-end-member structures have positive ΔE_f. The up-bowing (concavity) of the random
solid solution curves reach 100 meV/f.u. for Ti\(_{1-x}\)Zr\(_x\)N and 35 meV/f.u. for Ti\(_{1-x}\)Hf\(_x\)N, indicating miscibility gaps. There is little asymmetry of \(\Delta E_f(x)\) in Ti\(_{1-x}\)Zr\(_x\)N but much more in Ti\(_{1-x}\)Hf\(_x\)N, leaning to the smaller cation TiN-side. Such asymmetry should also result in asymmetry in the phase diagram of Ti\(_{1-x}\)Hf\(_x\)N. On the other hand, cation size mismatch in Zr\(_{1-x}\)Hf\(_x\)N is small, leading to much smaller absolute values of \(\Delta E_f\) (< 20 meV/f.u.). Most Zr\(_{1-x}\)Hf\(_x\)N structures have negative \(\Delta E_f\) and there are more members on and close to the convex hull; hence ordering is predicted. Note that some CE enumerated structures (green crosses in Figure 1) are slightly below the convex hull. These are spurious ground states that lie within the numerical errors of the fitting process for CE coefficients. In systems with many states near the convex hull, the miscibility gaps close at very low temperatures, as seen in Section 3.3 for Zr\(_{1-x}\)Hf\(_x\)N. The random solid solution curve of Zr\(_{1-x}\)Hf\(_x\)N exhibits down-bowing (convexity). This is in contrast to the up-bowing behavior seen in Zr\(_{1-x}\)Hf\(_x\)C\(^{80}\), although the energy scales are similar (10 meV/f.u.). It is likely due to the different electronegativities\(^{81,82}\) of C (2.55) and N (3.04), and that M-N ionic bonds are more spatially accommodating than M-C covalent bonds. Nevertheless, we anticipate low temperature disordering in this system, similar to Zr\(_{1-x}\)Hf\(_x\)C.

To discover the connection between the positive \(\Delta E_f\) and the electronic structures, we selected three structures to draw the projected electronic density of states (DOS) in Figure 2. This was done for each system, including the end member structures and one with A\(_{0.5}\)B\(_{0.5}\)N bulk composition, where A and B are transition metals. The A\(_{0.5}\)B\(_{0.5}\)N structure has alternating A and B cations in the [111] direction. \(\Delta E_f\) of this structure is positive in Ti\(_{1-x}\)Zr\(_x\)N and Ti\(_{1-x}\)Hf\(_x\)N and negative in Zr\(_{1-x}\)Hf\(_x\)N. In each of the three systems, the Fermi energy (\(E_F\)) is in the middle of a slope, indicating metallic behavior. Overlap between the transition metal d-states and nitrogen p-states, especially below \(E_F\), indicates strong bonding. Comparing TiN, ZrN and HfN, Ti in TiN has a higher peak between 0-2 eV in the conduction band than Zr and Hf in their respective nitrides. This difference persists in their solid solutions Ti\(_{0.5}\)Zr\(_{0.5}\)N and Ti\(_{0.5}\)Hf\(_{0.5}\)N, and could be another reason besides the cation size mismatch for their energetic disadvantage relative to the end members. In addition, we performed Crystal Orbital Hamilton Populations (COHP)\(^{83}\) analyses to examine the bonding characteristics on these structures and did not find noticeable indicators (Figure S1 and Table S1, Supplemental Material).
Figure 2 Projected density of states of TiN, ZrN, HfN and three solid solutions with composition $A_{0.5}B_{0.5}N$ where A and B are transition metals. The Fermi energy is set to 0.

Additionally, SQS’s at different compositions were used to calculate ΔE_f for the random solutions, which are also depicted in Figure 1. The fitted curves compare very well with the CE-fitted random solid solution curves in all three systems, validating the effectiveness of SQS in modeling random solid solution configurations. We reiterate that SQS needs to be combined with entropy contributions under ideal mixing assumption and experimental enthalpy corrections to obtain approximate phase boundaries. The CE formalism is capable of theoretically predicting the full-temperature-range phase stability with rigor.
3.3. Cluster expansions and phase diagrams

Table 2 summarizes the numbers of structures calculated with DFT, numbers of clusters, fitted EClIs and cross validation scores. Detailed information of the cluster sets and EClIs is provided in Figure S2 and Table S2 of the Supplemental Material.

Table 2 Numbers of structures calculated with DFT, numbers of clusters in pairs, triplets and quadruplets, and cross-validation (CV) score of Ti$_{1-x}$Zr$_x$N, Ti$_{1-x}$Hf$_x$N and Zr$_{1-x}$Hf$_x$N.

<table>
<thead>
<tr>
<th></th>
<th>Num. of structures</th>
<th>Num. of clusters (pair + trip + quad)</th>
<th>CV score (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_{1-x}$Zr$_x$N</td>
<td>45</td>
<td>15 + 7</td>
<td>5.2</td>
</tr>
<tr>
<td>Ti$_{1-x}$Hf$_x$N</td>
<td>74</td>
<td>16 + 7</td>
<td>3.8</td>
</tr>
<tr>
<td>Zr$_{1-x}$Hf$_x$N</td>
<td>95</td>
<td>32 + 23 + 3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Figure 3 shows the calculated phase diagrams of Ti$_{1-x}$Zr$_x$N, Ti$_{1-x}$Hf$_x$N and Zr$_{1-x}$Hf$_x$N.

Table 3 summarizes the resulting consolute temperatures (T_C). The first two systems feature simple miscibility gaps with T_C at 2400 K and 900 K, respectively. The asymmetry of the miscibility gap in Ti$_{1-x}$Hf$_x$N is identified with the consolute point at $x_C \approx 0.3$. Similar asymmetry was also predicted for transition metal carbide systems Ti$_{1-x}$Zr$_x$C and Ti$_{1-x}$Hf$_x$C80, and carbonate systems Ca$_{1-x}$Mg$_x$CO$_3$ and Cd$_{1-x}$Mg$_x$CO$_3$23,25,84.

There are multiple ground states in Zr$_{1-x}$Hf$_x$N, and phase transitions disappear above ~200 K. Computational time is unrealistically long to draw detailed boundaries of the many ground states. Therefore, we estimated their outer boundary through SGC ensemble simulations at different temperatures. We see abrupt changes in x with respect to μ in Figure 3(d). When these abrupt changes disappear and the curves become smooth, the miscibility gaps are indicated to close up and the disordered solution phase is assumed to be stable. Based on this closure, we estimated the dotted curve in Figure 3(c).

Table 3 Consolute temperatures (T_C) of Ti$_{1-x}$Zr$_x$N, Ti$_{1-x}$Zr$_x$C, Ti$_{1-x}$Hf$_x$N and Zr$_{1-x}$Hf$_x$N. Vibrational free energy contributions are shortened as “vib”.

<table>
<thead>
<tr>
<th></th>
<th>T_C without vib (K)</th>
<th>T_C with vib (K)</th>
<th>T_C from literature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_{1-x}$Zr$_x$N</td>
<td>2400</td>
<td>1400</td>
<td>1850a, 5000b</td>
</tr>
<tr>
<td>(with LDA)</td>
<td>2900</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Ti$_{1-x}$Zr$_x$C</td>
<td>3200</td>
<td>2250</td>
<td>2250c</td>
</tr>
<tr>
<td>Ti$_{1-x}$Hf$_x$N</td>
<td>900</td>
<td>700</td>
<td>1300a</td>
</tr>
<tr>
<td>Zr$_{1-x}$Hf$_x$N</td>
<td>< 200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

afrom Ref. 27,85
bfrom Ref. 50
cfrom Ref. 86
Figure 3 Calculated phase diagrams of (a) Ti$_{1-x}$Zr$_x$N, (b) Ti$_{1-x}$Hf$_x$N and (c) Zr$_{1-x}$Hf$_x$N. Small crosses are raw data points, and curves are interpolations and extrapolations. In (a) and (b), blue “+” and red “×” curves correspond to results without and with the vibrational contribution. In (c), the dotted curve indicates the estimated consolute boundary, as demonstrated by the inset (d). In (d), curves indicate compositions with respect to chemical potentials at various temperatures in a semi-grand-canonical ensemble. The abrupt changes disappear above 200 K, marking the consolute boundary.
We included vibrational free energy contributions for Ti\(_{1-x}\)Zr\(_x\)N and Ti\(_{1-x}\)Hf\(_x\)N, because there are miscibility gaps far above room temperature, and such contributions are likely to be significant. Figure S3 of the Supplemental Material illustrates the relationship between bond stiffness vs bond length and the linear fits. The Zr-N and Hf-N bonds behave similarly with large values, ~5 eV/Å\(^2\) for the stretching term at 2.24 Å, contrasting Ti-N, ~1 eV/Å\(^2\), likely because of the difference in ionic radii. Vibrational contributions reduce T\(_C\) from 2400 K to 1400 K for Ti\(_{1-x}\)Zr\(_x\)N, and from 900 K to 700 K for Ti\(_{1-x}\)Hf\(_x\)N. The 42% drop in Ti\(_{1-x}\)Zr\(_x\)N is large, but is also seen in ionic systems such as NaCl-KCl\(^{19}\) and metallic systems such as Cr-Mo\(^{7}\). In comparison, Holleck\(^{27,85}\) estimated T\(_C\) to be 1850 K for Ti\(_{1-x}\)Zr\(_x\)N and 1300 K for Ti\(_{1-x}\)Hf\(_x\)N, based on phenomenological thermodynamic models. Hoerling \textit{et al}.\(^{50}\) estimated that for Ti\(_{1-x}\)Zr\(_x\)N T\(_C\) was 5000 K based on regular solution mixing. No other estimates based on thermodynamic ensemble simulations, as in the present work, were found in the literature. However, experimental endeavors, including cathodic arc plasma deposited\(^{50}\) and dc reactive magnetron sputtered\(^{51}\) Ti\(_{1-x}\)Zr\(_x\)N samples remained single-phase without decomposition after annealing at 600-1200 °C for hours. Only a slight broadening of an X-ray powder diffraction (XRD) peak was observed after a sample, with x = 0.53, was annealed at 1200 °C\(^{50}\). This observation is consistent with the initial stage of spinodal decomposition. Overall, experimental proof for phase separation in Ti\(_{1-x}\)Zr\(_x\)N and Ti\(_{1-x}\)Hf\(_x\)N is lacking. Therefore, comparison is made for the carbide system Ti\(_{1-x}\)Zr\(_x\)C in Figure S4 of the Supplemental Material; it shows that vibrational free energy contributions reduce T\(_C\) from 3200 K to 2250 K, matching the experimental value precisely\(^{86}\). Comparable to the Ti\(_{1-x}\)Zr\(_x\)N, vibrational contributions have a large effect (28%) on T\(_C\) in this system. The calculations were done with PBE potentials, and such precise agreement may be coincidental but the high accuracy is as expected\(^{19,23,68}\). For this reason, we used PBE rather than LDA\(^{32,64,87,88}\) to perform all the calculations. The difference LDA potentials make is T\(_C\) ~500 K higher for Ti\(_{1-x}\)Zr\(_x\)N (Table 3).

To visually evaluate the degree and nature of the phase separation interface at different temperatures within the miscibility gap, and the extent of separation, we tracked the configurations of Ti\(_{0.5}\)Zr\(_{0.5}\)N in a canonical ensemble MC simulation in Figure 4. Composition x, instead of \(\mu\) is fixed, as the simulaiton cell is annealed at varous temperatures, including 3000 K (far above the miscibility gap), 1500 K (just above the miscibility gap 1400 K), 1200 K, 900 K and 300 K (within the miscibility gap). From 3000 K to 1500 K the difference in configurational order is negligible, demonstrating complete disorder as soon as the miscibility gap is closed. As temperature is reduced, phase separation appears. At 300 K, it is clear that phase separation is complete with sharp interfaces between TiN and ZrN. Our simulation shows a layered configuration at lower temperatures. It is one of the many different outcomes from the Monte Carlo simulations. However, it does occur more often than segregated chunks. One explanation would be the system prefers to minimize the close interactions between Ti and Zr, and a planer separation leads to the smallest interface. In reality, the shapes of the phase aggregates are determined by separation mechanisms, such as nucleation and growth, or spinodal decomposition. The XRD peak-broadening observed by Hoerling \textit{et al}.\(^{50}\), which would have been more prominent had the samples been annealed at ~900 °C and longer, is consistent with our simulation results.
Figure 4 Monte Carlo simulation cells of Ti$_{0.5}$Zr$_{0.5}$N at 3000 K (far above the miscibility gap), 1500 K (just above the miscibility gap 1400 K), 1200 K, 900 K and 300 K (within miscibility gap). Blue and green balls are Ti and Zr atoms. N atoms are omitted from the display for clarity. Increasing tendency towards separation is clearly visible with lowering temperature.

3.4. Random solid solutions

Moler volume CE were performed with the same cluster sets used for ΔE_f. Composition dependent volume deviations from linearity for random solid solutions are:

$$V_{\text{linear}} = (1 - x)V_{AN} + xV_{BN},$$

Volume deviation of $A_{1-x}B_xN \equiv \frac{[V_{A_{1-x}B_xN} - V_{\text{linear}}]}{V_{\text{linear}}}$. (Eqn. 1)

Here A and B are Ti, Zr or Hf. Shown in Figure 5, the random solid solutions of Ti$_{1-x}$Zr$_x$N and Ti$_{1-x}$Hf$_x$N have small positive deviations of about 1%. Positive deviations were also reported by Abadias et al.\cite{51}, and in Ti$_{1-x}$Zr$_x$C and Ti$_{1-x}$Hf$_x$C\cite{80}. On the other hand, negative deviations were predicted for various carbonate quasibinaries\cite{84}, likely due to the complex anion group CO_3^{2-}, which allows more geometric optimization than simple anions\cite{89}. Calculated volume deviations in Zr$_{1-x}$Hf$_x$N are negligible, below 0.1%, because of the minimal cation size mismatch.
We separated solid solution mixing into two steps: 1) volume change (vc); and 2) chemical exchange and relaxation (xc-rlx), both relative to end members:

\[
\Delta E_{vc}(A_{1-x}B_xN) = (1 - x)[E_{AN}(V_{A_{1-x}B_xN}) - E_{AN}(V_{AN})] + x[E_{BN}(V_{A_{1-x}B_xN}) - E_{BN}(V_{BN})],
\]

\[
\Delta E_{xc-rlx}(A_{1-x}B_xN) = E(A_{1-x}B_xN) - (1 - x)E_{AN}(V_{A_{1-x}B_xN}) - xE_{BN}(V_{A_{1-x}B_xN}),
\]

\[
\Delta \varepsilon = \Delta E_{vc} + \Delta E_{xc-rlx}, \tag{Eqn. 2}
\]

where \(E_{AN}(V)\) and \(E_{BN}(V)\) denote the EOS’s of \(AN\) and \(BN\). \(\Delta E_{vc}\) describes the energy change due to the expansion or contraction of end member structures to the volume of the solid solution, and \(\Delta E_{xc-rlx}\) measures the effect of the chemical exchange and solution cell shape and atomic position relaxation.

Figure 6 shows the \(\Delta E_{vc}\) and \(\Delta E_{xc-rlx}\) of the random solid solutions. In Ti\(_{1-x}\)Zr\(_x\)N and Ti\(_{1-x}\)Hf\(_x\)N, a large part of the \(\Delta E_{vc}\) are canceled out by \(\Delta E_{xc-rlx}\). In Zr\(_{1-x}\)Hf\(_x\)N the \(\Delta E_{xc-rlx}\) is larger in absolute value than \(\Delta E_{vc}\). Comparing Ti\(_{1-x}\)Zr\(_x\)N and Ti\(_{1-x}\)Hf\(_x\)N, \(\Delta E_{vc}\) of Ti\(_{1-x}\)Hf\(_x\)N is only \(3/4\) of that of Ti\(_{1-x}\)Zr\(_x\)N, despite the almost identical cation radii of Ti and Zr. This is likely due to the combined effect of volume difference (ZrN 24.3 Å\(^3\) vs HfN 23.4 Å\(^3\)) and bulk modulus difference (ZrN 240 GPa vs HfN 247 GPa). On the other hand, \(\Delta E_{xc-rlx}\) of Ti\(_{1-x}\)Zr\(_x\)N and Ti\(_{1-x}\)Hf\(_x\)N are similar in magnitude. Therefore, \(\Delta E_{vc}\) is the main
reason for the difference in magnitude of ΔE_f in Figure 1(a)(b), and the consolute temperatures in Figure 3(a)(b), similarly in $\text{Ti}_{1-x}\text{Zr}_x\text{C}$ and $\text{Ti}_{1-x}\text{Hf}_x\text{C}$\cite{80}.

![Graph](image)

Figure 6 Volume change and exchange-relaxation energies of $\text{Ti}_{1-x}\text{Zr}_x\text{N}$, $\text{Ti}_{1-x}\text{Hf}_x\text{N}$ and $\text{Zr}_{1-x}\text{Hf}_x\text{N}$. Values are per formula unit, i.e. per exchangeable site. Curves indicate CE-fitted values of the random solid solution configurations, with solid curves above the x-axis for the volume change energies (ΔE_{vc}), and dashed curves below for the exchange-relaxation energies (ΔE_{xc-rlx}).

In $\text{Ti}_{1-x}\text{Zr}_x\text{N}$ and $\text{Ti}_{1-x}\text{Hf}_x\text{N}$ the $\Delta E_{vc}(x)$ curves exhibit asymmetry, both with maxima on the smaller cation TiN-side. Similar results were calculated for carbide systems $\text{Ti}_{1-x}\text{Zr}_x\text{C}$ and $\text{Ti}_{1-x}\text{Hf}_x\text{C}$\cite{80}, and nitride systems $\text{Al}_{1-x}\text{In}_x\text{N}$ and $\text{Ga}_{1-x}\text{In}_x\text{N}$\cite{16}. This asymmetry can be explained by the shape of end member EOS’s, e.g. TiN in Figure S5. It takes more energy to insert a larger ion into a smaller-volume crystal, than vice versa. The $\Delta E_{xc-rlx}(x)$ curve maximum for $\text{Ti}_{1-x}\text{Hf}_x\text{N}$ is less close to the TiN-side than $\text{Ti}_{1-x}\text{Zr}_x\text{N}$, resulting in more asymmetry of the final $\Delta E_f(x)$ curve for $\text{Ti}_{1-x}\text{Hf}_x\text{N}$ than $\text{Ti}_{1-x}\text{Zr}_x\text{N}$ in Figure 1. These results were confirmed by SQS calculations. As stated in Section 3.3, this asymmetry leads to the asymmetry in the calculated $\text{Ti}_{1-x}\text{Hf}_x\text{N}$ phase diagram in Figure 3(b). Surprisingly, asymmetry of the $\text{Ti}_{1-x}\text{Hf}_x\text{C}$ phase diagram is small\cite{80}. We reproduced this phase diagram to confirm it. Thus, comparing $\text{Ti}_{1-x}\text{Zr}_x\text{N}$ and $\text{Ti}_{1-x}\text{Hf}_x\text{N}$ and $\text{Ti}_{1-x}\text{Hf}_x\text{C}$, strong or weak asymmetry of $\Delta E_f(x)$ and the resultant phase diagram can occur depending on the asymmetry of $\Delta E_{xc-rlx}(x)$, a quantity that measures the chemical exchange and cell shape and ionic relaxation. The mixing energy seperation illustrated above indicates that the size and shape of miscibility gaps are influenced by different processes.
3.5 Discussion on phase separation

Apparently, the experimental annealing temperature range 600-1200 °C is not sufficient for Ti$_{1-x}$Zr$_x$N to phase segregate\(^50\). This explanation is in agreement with the fact that phase separation was observed in Ti$_{1-x}$Zr$_x$C but not in Ti$_{1-x}$Zr$_x$N. As listed in Table 3, Ti$_{1-x}$Zr$_x$C has a T_C of 2250 K while Ti$_{1-x}$Zr$_x$N 1400 K. At the same temperature below both T_C, there is more undercooling for Ti$_{1-x}$Zr$_x$C, therefore more driving force for phase separation. In addition, the bond dissociation energies for Ti-C (423 ± 30 kJ/mol) and Zr-C (495.8 ± 38.6 kJ/mol) are smaller than the corresponding Ti-N (476 ± 33 kJ/mol) and Zr-N (565 ± 25 kJ/mol)\(^90\), so diffusion of TMs in nitrides is probably slower than in carbides. The above reasoning works similarly for Ti$_{1-x}$Hf$_x$N.

Moreover, it is noteworthy that the two systems Ti$_{1-x}$Zr$_x$N and Ti$_{1-x}$Hf$_x$N have no electronic incompatibility as is the case for Ti$_{1-x}$Al$_x$N\(^39,91\), because all three TMs belong to the same group. This results in the negative values of ΔE_{xc-rll} . For spinodal decomposition to be the preferential mechanism of phase separation, ΔE_{xc-rll} needs to be positive, so that there is a chemical tendency for separation when volume change of emerging phases is inhibited, or slow in the initial stage. Therefore, nucleation and growth, where the energy advantage gained from volume change (positive ΔE_{vc}) counteracts the loss from chemical exchange (negative ΔE_{xc-rll}) to provide the driving force to get over the initial energy barrier is more likely to happen for systems like Ti$_{1-x}$Zr$_x$N and Ti$_{1-x}$Hf$_x$N. Such a chemical stability and solution hardening due to different cation radii make these two quasibinary systems ideal for cutting tools applications within a typical temperature range of 600-900 °C.

3.6 Elastic and mechanical properties of the SQS’s

Figure 7 show the symmetrized elastic constants C_{11}, C_{12} and C_{44} and the derived mechanical properties, including bulk moduli (B), shear moduli (G), Pugh’s ratios (k), Poisson’s ratios (ν), and Vickers hardnesses (H_V) of the SQS’s of Ti$_{1-x}$Zr$_x$N, Ti$_{1-x}$Hf$_x$N and Zr$_{1-x}$Hf$_x$N. All values are included in Table S3 of the Supplemental Material. For detailed definitions and derivations see Ref.\(^32,64,33\). In particular we note that H_V was estimated with the formula $H_V = 0.92k^{1.37}G^{0.708}$, from Tian et al.\(^92,93\) Among end members, TiN has the largest H_V, 23.2 GPa, followed by HfN with 19.3 GPa, and ZrN with 18.1 GPa. Although calculated trends for C_{11} and C_{12} are unclear, the shear-related quantities C_{44}, G and H_V in general exhibit monotonic behavior. The negative deviation from linearity in the calculations by Abadias et al.\(^51\) for Ti$_{1-x}$Zr$_x$N’s shear modulus G is also seen here. This shows mixing nitrides of same group TMs does not lead to hardness increase from an electronic origin. Ramana et al.\(^94\) observed experimentally that with a higher concentration of Zr in Ti$_{1-x}$Zr$_x$N, the hardness decreases, in agreement with our calculated trend. However, they also reported sensitive dependence of hardness on nitrogen flow percentage and substrate bias voltage in the DC reactive magnetron sputtering, ranging from 17 to 30 GPa. It was also observed that Ti$_{1-x}$Zr$_x$N solid solutions can have hardness values reaching 40 GPa\(^95\), significantly higher than the two end members, likely due to solution hardening, where the cation size mismatch serves as dislocation impedance. It was also likely due to the Hall-Petch effect, which leads to enormous hardness increase with decreasing grain size, from ~20 GPa at 17 nm to ~40
GPa at 8 nm. These plastic-deformation-related and microstructural aspects of hardness are not easily addressed in the first-principles framework.

Figure 7 Elastic constants C_{11}, C_{12}, C_{44}, bulk moduli (B), shear moduli (G) and Vickers hardness (H_V) of the SQSs of Ti$_{1-x}$Zr$_x$N, Ti$_{1-x}$Hf$_x$N and Zr$_{1-x}$Hf$_x$N. Lines are a guide to the eye.

4. Conclusions

We studied the phase equilibria of three ceramic quasibinary systems Ti$_{1-x}$Zr$_x$N, Ti$_{1-x}$Hf$_x$N and Zr$_{1-x}$Hf$_x$N ($0 \leq x \leq 1$) with DFT, CE and MC simulations. Vibrational free energy contributions (vib) were also considered for Ti$_{1-x}$Zr$_x$N and Ti$_{1-x}$Hf$_x$N. The consolute temperatures are 1400 K (2400 K without vib) for Ti$_{1-x}$Zr$_x$N, 700 K (900 K without vib) for Ti$_{1-x}$Hf$_x$N, and below 200 K for Zr$_{1-x}$Hf$_x$N (without vib). The asymmetry
of $\Delta E_{f}(x)$ is greater in $\text{Ti}_{1-x}\text{Hf}_x\text{N}$ than in $\text{Ti}_{1-x}\text{Zr}_x\text{N}$, with less solubility on the smaller cation TiN-side, and similar asymmetries were also predicted for the corresponding phase diagrams. ΔE_{f} of the random solid solutions were decomposed into a volume change (ΔE_{vc}) term and a chemical exchange and relaxation (ΔE_{xc-rl}) term. These two energies result in partial cancellation. We conclude that ΔE_{vc} influences the magnitude of consolute temperature while ΔE_{xc-rl} influences the asymmetry of $\Delta E_{f}(x)$ and the phase boundaries. We also conclude that the absence of experimentally observed phase separation in $\text{Ti}_{1-x}\text{Zr}_x\text{N}$ and $\text{Ti}_{1-x}\text{Hf}_x\text{N}$ is probably due to a combined effect of insufficient undercooling, inadequate atomic diffusivity, and initial energy barrier for chemical exchange with constrained lattices.

In addition, elastic constants and mechanical properties of the random solid solutions were studied with the SQS approach. Monotonic trends, in the composition dependence, of shear-related mechanical properties, such as H_V between 18 to 23 GPa were predicted. Trends for $\text{Ti}_{1-x}\text{Zr}_x\text{N}$ and $\text{Ti}_{1-x}\text{Hf}_x\text{N}$ exhibit down-bowing behavior. It shows that mixing nitrides of same group TMs does not lead to hardness increase from an electronic origin, but through solution hardening mechanism. The mixed thin films show consistency and stability with little phase separation, making them desirable coating choices.

Acknowledgement

The computing for this project was performed at the Center for Computational Innovations (CCI) at Rensselaer Polytechnic Institute, and Ohio Supercomputer Center (OSC)97. We thank the National Science Foundation grants CMMI 1234777, 1234872, 1629230, and 1629239 for funding this work.
References

30. Georgson, M., Roos, A. & Ribbing, C. -G. The influence of preparation conditions

60. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector

76. Efthimiopoulos, I. *et al.* Pressure-induced transition in the multiferroic CoCr2O4

