So far, structural mechanics using Direct Stiffness approach.

Finite element method is used to solve physical problems:
- Solid Mechanics
- Fluid Mechanics
- Heat Transfer
- Electrostatics
- Electromagnetism

Physical problems are governed by differential equations which satisfy
- Boundary conditions
- Initial conditions

One variable: Ordinary differential equation (ODE)
Multiple independent variables: Partial differential equation (PDE)
Axially loaded elastic bar

\[A(x) = \text{cross section at } x \]
\[b(x) = \text{body force distribution (force per unit length)} \]
\[E(x) = \text{Young's modulus} \]
\[u(x) = \text{displacement of the bar at } x \]

Differential equation governing the response of the bar

\[\frac{d}{dx}\left(E(x) \frac{du}{dx} \right) + b(x) = 0; \quad 0 < x < L \]

Second order differential equations
Requires 2 boundary conditions for solution

Flexible string

\[S = \text{tensile force in string} \]
\[p(x) = \text{lateral force distribution (force per unit length)} \]
\[w(x) = \text{lateral deflection of the string in the y-direction} \]

Differential equation governing the response of the bar

\[E(x) \frac{d^2 w}{dx^2} + p(x) = 0; \quad 0 < x < L \]

Second order differential equations
Requires 2 boundary conditions for solution

Heat conduction in a fin

\[A(x) = \text{cross section at } x \]
\[Q(x) = \text{heat input per unit length per unit time [J/sm]} \]
\[k(x) = \text{thermal conductivity [J/C ms]} \]
\[T(x) = \text{temperature of the fin at } x \]

Differential equation governing the response of the fin

\[\frac{d}{dx}\left(k(x) \frac{dT}{dx} \right) + Q(x) = 0; \quad 0 < x < L \]

Second order differential equations
Requires 2 boundary conditions for solution
Boundary conditions (examples)

Dirichlet/ displacement bc

\[T = 0 \quad \text{at} \quad x = 0 \]
\[-k \frac{dT}{dx} = h \quad \text{at} \quad x = L. \]

Neumann/ force bc

\[\frac{d}{dx}(k \frac{d\phi}{dx}) + Q = 0; \quad 0 < x < L. \]

Fluid flow through a porous medium (e.g., flow of water through a dam)

- **A(x) = cross section at x**
- **Q(x) = fluid input per unit volume per unit time**
- **k(x) = permeability constant**
- **\(\phi(x) = \text{fluid head} \)**

Differential equation

Second order differential equations
Requires 2 boundary conditions for solution

Boundary conditions (examples)

\[\phi = 0 \quad \text{at} \quad x = 0 \]
Known head

\[-k \frac{d\phi}{dx} = h \quad \text{at} \quad x = L \]
Known velocity
Observe:
1. All the cases we considered lead to very similar differential equations and boundary conditions.
2. In 1D it is easy to analytically solve these equations.
3. Not so in 2 and 3D especially when the geometry of the domain is complex: need to solve **approximately**.
4. We’ll learn how to solve these equations in 1D. The approximation techniques easily translate to 2 and 3D, no matter how complex the geometry.

A generic problem in 1D

A general algorithm for approximate solution:

Guess

\[u(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \ldots + \text{...} \]

where \(\phi_0(x), \phi_1(x), \ldots \) are “known” functions and \(a_0, a_1, \ldots \) are constants chosen such that the approximate solution

Satisfies the differential equation

Satisfies the boundary conditions

i.e.,

\[
\begin{align*}
ad_0 \frac{d^2 \phi_0(x)}{dx^2} + a_1 \frac{d^2 \phi_1(x)}{dx^2} + \ldots + a_n \frac{d^2 \phi_n(x)}{dx^2} + \ldots + x = 0; & \quad 0 < x < 1 \\
a_0 \phi_0(0) + a_1 \phi_1(0) + \ldots & = 0 \\
a_0 \phi_0(1) + a_1 \phi_1(1) + \ldots & = 1
\end{align*}
\]

Solve for unknowns \(a_0, a_1, \ldots \) and plug them back into

\[u(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \ldots \]

This is your **approximate solution** to the strong form.

Analytical solution

\[u(x) = -\frac{1}{6} x^3 + \frac{7}{6} x \]

Assume that we **do not know** this solution.