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Abstract In the design and analysis of multibody dy-
namics systems, sensitivity analysis is a critical tool for
good design decisions. Unless efficient algorithms are
used, sensitivity analysis can be computationally expen-
sive, and hence, limited in its efficacy. Traditional direct
differentiation methods can be computationally expen-
sive with complexity as large as O(n4 + n2m2 + nm3),
where n is the number of generalized coordinates in the
system and m is the number of algebraic constraints. In
this paper, a direct differentiation divide-and-conquer
approach is presented for efficient sensitivity analysis
of multibody systems with general topologies. This
approach uses a binary tree structure to traverse the
topology of the system and recursively generate the
sensitivity data in linear and logarithmic complexities
for serial and parallel implementations, respectively.
This method works concurrently with the forward dy-
namics problem, and hence, requires minimal data stor-
age. The differentiation required in this algorithm is
minimum as compared to traditional methods, and is
generated locally on each body as a preprocessing step.
The method provides sensitivity values accurately up
to integration tolerance and is insensitive to pertur-
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bations in design parameter values. This approach is
a good alternative to existing methodologies, as it is
fairly simple to implement for general topologies and
is computationally efficient.
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1 Introduction

Design of multibody dynamics systems is an iterative
process and is computationally taxing. Sensitivity analy-
sis is a useful tool that significantly reduces the iter-
ative nature of the design process by helping make
intelligent guesses for the design parameters. However,
determining sensitivity terms is an involved process
given the complexity of governing equations of motions
for the simplest of multibody systems. Consequently,
sensitivity analysis continues to be an important area
of research.

Finite difference approximation is perhaps the most
popular and straightforward numerical method for gen-
erating sensitivity information. Although successful in
many applications, this method suffers from a number
of difficulties. These include the sensitivity to parame-
ter perturbation size and system stiffness as discussed
in Bestle and Eberhard (1992), Bischof (1996), and
Anderson and Hsu (2001). Analytical methods, such as
the adjoint variable method, the direct differentiation
method, and automatic differentiation (Bischof 1996),
do not suffer from the problems faced by the numerical
methods. These analytical methods have been used in
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Table 1 The nomenclature
Symbol Meaning

ak
i Translational acceleration of handle i on body k

f k
i Force on body k through handle i

g Number of design variables
m Number of constraint equations for the system
mk Mass of body k
n Number of degrees of freedom in the system
nb Number of bodies in the system
p Design parameter
q Generalized coordinate associated with a joint
q Global column matrix of generalized coordinates for all joints in the system
rkik j Position vectors from point ki to k j

rk0ki × 3×3 skew symmetric matrix for cross product of the position vector rk0ki

u Generalized speed at a joint
u Global column matrix of generalized speeds for all joints in the system
u̇ Time derivative of generalized speed at a joint
u̇ Global column matrix of the derivative of generalized

speeds for all joints in the system
Ak

i Spatial acceleration of body k described at handle i
Ċ Time derivative of any quantity C
CT Transpose of a matrix C
C−1 Inverse of a matrix C
C Transformation matrix
DJk

Orthogonal complement matrix of PJk

Fk
0 Spatial force on body k about its center of mass

Fk
a Spatial state-dependent forces on body k

Fk
ic Spatial constraint force acting on body k at handle i

Fk
i Ordered list of measure numbers of the spatial force on body k at handle i

Hk
i Handle i on body k

Ik
0 Inertia tensor of body k about its center of mass

J Objective function for sensitivity analysis
Ji Kinematic joint connecting bodies i and i − 1
K Column matrix of state-dependent forces acting on the whole system
Lk Characteristic dimension of body k
Mi

0 Spatial mass matrix of body k about its center of mass
M Global mass matrix for the whole system
PJk

Matrix of free modes of motion at joint Jk

Skik j Spatial matrix for shifting a quantity described
at point ki to its equivalent at point k j

U Identity matrix
0 Zero matrix
αk Angular acceleration of body k
χ Useful intermediate quantity
ν Number of degrees of freedom allowed by joint Jk

� Useful intermediate quantity
φk

ij Coupling terms for inertia and state-dependent
quantities in sensitivity equation for body k

φx:z
ij Corresponding terms in sensitivity

equations of the assembly of bodies x to z
ϒx:z

ij Inertia coupling terms of assembly of bodies x to z
τk

i Torque on body k about handle i
ζ k

ij Inertia coupling terms of body k
dZ/dpj Derivative of any quantity Z with respect to design parameter p j

∂ Z/∂z Partial derivative of any quantity Z with respect to another quantity z
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sensitivity analysis of multibody dynamics systems, but
they too have been known to have some drawbacks.

The adjoint variable method has been presented
in Haug and Ehle (1982), Haung et al (1984), Bestle
and Seybold (1992), Bestle and Eberhard (1992), and
Eberhard (1996), among others. In these methods, a
set of adjoint equations is introduced to represent the
variations of the state. The advantage of using these
methods is that explicit calculation of sensitivity terms
is avoided. With this method, for a system modeled
as having n generalized coordinates, m algebraic con-
straints, and g design variables, a total of 2(n + m) + g
differential equations must be integrated, as discussed
in Bestle and Eberhard (1992). First, a record of the
complete system state is produced for the time interval
of interest by the forward integration of the n + m
equations of motion. Using this state information, the
sensitivities are then determined from the set of n +
m + g adjoint equations, which are integrated back-
ward in time over the same time interval. The use of
this method is desirable when the number of design
variables is large as compared to the objective func-
tions, particularly when the forward dynamics analysis
is being performed in a more traditional [not O(n)]
manner. If one considers the total cost required of
getting these sensitivity terms by the adjoint method,
the best one can hope for is O((g + 1)(n + m)) overall.
This is due to the cost associated with each function
evaluation in the forward integration of the equations
of motion [at best, this is O(n + m) per integration step]
and the subsequent cost of each function evaluation in
the backward integration of the system of n + m + g
adjoint equations. Additionally, the implementation of
these methods is complex, and a large amount of data
has to be stored for the forward problem. The large
number of I/O operations slows down the speed signif-
icantly as documented in Chang and Nikravesh (1985)
and Pagalday et al (1995). Another source of error is
the backward temporal integration necessary for the
calculation of adjoint variables. The adaptive nature
of the integrators calls for interpolation to obtain all
values at matching time steps. Besides this, as indicated
in Bestle and Seybold (1992) and Etman (1997), numer-
ical stability for the adjoint variable methods remains
an open question.

The direct differentiation methods were proposed
in Chang and Nikravesh (1985), Tak (1990), Dias and
Pereira (1997), Serban and Haug (1998), and Jain and
Rodrigues (2000), among others. These methods are
conceptually the easiest to understand. They systemat-
ically apply the chain rule of differentiation to obtain
analytical expressions for sensitivity terms. The number
of integrated equations is roughly equal to the number

of state variables times the number of design variables.
The major advantages of these methods are higher
numerical stability and relative insensitivity of solution
accuracy to parameter perturbations. Implementation
approaches for direct differentiation vary with differ-
ent formulations of the equations of motion. Newton–
Euler is the most frequently used formulation as found
in Chang and Nikravesh (1985) and Serban and Haug
(1998). Although the formulation of the sensitivity
equations is straightforward, the result is a set of com-
putationally demanding differential algebraic equations
(DAE). Consequently, the cost of computation of the
sensitivity terms depends directly upon the algorithm
used for forming and solving the equations of motion.

The analytical methods described above are all capa-
ble of calculating the sensitivity derivatives. However,
the costs involved in each method can vary greatly.
For example, in our system with g design variables, n
generalized coordinates, and m independent algebraic
constraint equations, the adjoint variable method pro-
duces a smaller system of (n + m + g) DAE requiring
O[(n + nm2 + m3) + (n + m)g] operations overall [in-
cluding required forward integration of the equations
of motion using a traditional O(n) scheme], whereas the
direct differentiation method involves (n + m)(g + 1)

DAE.
In this paper, a divide-and-conquer direct differ-

entiation approach (DCA) is presented for efficient
sensitivity analysis of multibody systems with general
topologies. This method is an efficient direct differ-
entiation scheme. Consequently, it does not require
excessive data storage as compared with the adjoint
variable method. This is because the sensitivity analy-
sis is carried out concurrently with the solution of
the forward dynamics problem. Similarly, there is no
need for backward differentiation, and errors due
to integration interpolation are eliminated. Further,
as the sensitivity information is generated analyti-
cally, the method is insensitive to numerical issues
of design parameter perturbations. The derivatives re-
quired for this approach are limited in number, are
mostly temporally invariant, and hence, only need to
be evaluated once for a simulation. This approach uses
a binary tree structure to traverse the topology of
the system and generate the sensitivity data in linear
and logarithmic complexities for serial and parallel
implementations, respectively. The sensitivity data are
accurate to integration error, making this approach
a good alternative to existing methodologies, as it is
fairly simple to implement for general topologies and is
computationally efficient. The methodology presented
here is a derived work from (1) divide-and-conquer
algorithm (Featherstone 1999a) and (2) the orthogo-
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nal complement-based divide-and-conquer algorithm
(Mukherjee and Anderson 2007).

2 Sensitivity problem formulations

The objective of sensitivity analysis is to measure the
sensitivity of a particular objective function to the
change in certain design or control variable value(s).
This information is useful in identifying the robustness
of a design and tolerances on system performance with
respect to variations in design variable values. For
multibody dynamics systems, the objective function J
is often an explicit function of design variable(s) p as
well as state variables q and u, the system generalized
coordinates and generalized speed, respectively. The
state variables may also be explicit functions of the
design variable(s). Further, the system state variable
values are themselves dependent on the design variable
values currently under consideration. Thus, the sensi-
tivity equation of the objective function J with respect
to design variable p can be written as

∇ J = ∂ J
∂p

+
n∑

r=1

(
∂ J
∂qr

dqr

dpj
+ ∂ J

∂ur

dur

dpj
+ ∂ J

∂u̇r

du̇r

dpj

)
(1)

It is clear from the above equation that the sensitivity
analysis requires the generation of the dependencies
of the state and state derivatives on the design vari-
able(s). Generating this dependency information can
be computationally expensive because the state and
state derivative variables are highly coupled for an
articulated multibody system. This expense is alleviated
somewhat, as there exist the following relations

dqr

d pj

∣∣∣∣
t=τ+dt

=
∫ t=τ+dt

t=τ

dq̇r

d pj

∣∣∣∣
t=τ

dt + dqr

d pj

∣∣∣∣
t=τ

(2)

dur

d pj

∣∣∣∣
t=τ+dt

=
∫ t=τ+dt

t=τ

du̇r

d pj

∣∣∣∣
t=τ

dt + dur

d pj

∣∣∣∣
t=τ

(3)

Thus, the task reduces to that of finding du̇r/dpj at
every instant in the simulation and substituting it back
into the above relations to generate the other terms.
Now, in the state-space form, the equations of motion
of a general multibody system reduce to

Mn×nu̇n×1 = Kn×1 (4)

The above equation presents a coupled set of n
equations where n is the number of degrees of freedom
of the system, M is the generalized mass matrix, u̇
is the column matrix of the unknown time derivatives
of generalized speeds, and K is the column matrix
of the forces on the system including state-dependent
inertia forces. Using a direct differentiation approach,

the above equations can be differentiated to generate
the desired u̇ values as

dMu̇
dpj

= dK
dpj

(5)

⇒ [Mn×n] du̇
dpj n×1

= ∂K
∂ pj

+ ∂K
∂q

dq
dpj

+ ∂K
∂u

du
dpj

−
[
∂M
∂ pj

+ ∂M
∂q

dq
dpj

+ ∂M
∂u

du
dpj

]
u̇

(6)

The direct method, applied in this manner, incurs
large computational expenses in calculating the differ-
entiations, which amount to O(n2) − O(n3) complexity.
Also, direct decomposition and solution of the above
set of n coupled equations amount to O(n3) complexity.
For even small values of n, these costs can become pro-
hibitive. Unless some efficient method is introduced to
reduce the cost, generating sensitivity information for
multibody systems can quickly become the bottleneck
in the design analysis process.

The methodology outlined in this paper reduces the
total number of required differentiations and reduces
the cost of solving the coupled equations from O(n3)

to O(n) in serial and O(log(n)) in parallel implementa-
tions. In the next section, the analytical preliminaries
required for the method are discussed. After that, a
brief overview of the divide-and-conquer scheme is
presented. The method for sensitivity analysis is then
discussed. Finally, results from numerical simulations
using the method are presented.

3 Analytical preliminaries

The position vector rk0k1 between any two points (0
and 1) on a representative body k is a function of
dimensions Li and the transformation matrices Ci be-
tween different basis vectors used in the definition of
rk0k1 . The transformation matrices Ci are functions of
the generalized coordinates qi (i = 1, 2, ..., n). Thus, the
position vector is an explicit function of dimensions Li

and generalized coordinates qi. Similarly, the angular
and translational velocities obtained from taking time
derivatives of the position vector are functions of the
dimensions Li, generalized coordinates qi, as well as the
generalized speeds ui. Further, the angular and trans-
lational accelerations are also kinematic functions of
the dimensions, dimensions Li, generalized coordinates
and speeds qi and ui, as well as the time derivative of
the generalized speeds u̇i. Additionally, the mass of a
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body is a function of the density and dimensions of
the body. The rotational inertia of the body depends
on the mass distribution as well as the position vectors,
making it a function of body geometry. These relations
are analytical in nature, and thus, the derivatives of the
kinematic entities with respect to the design parame-
ter pj can be obtained analytically and exactly. These
lowest level (local) derivatives need only be calculated
once as a preprocessing step to the simulation and are
temporally invariant. These sets of time-invariant local
derivatives, which may often be generated analytically,
are going to be referred to as derivative primitives and
will be treated as known quantities.

For example, consider a multibody system made of
nb bodies with the characteristic length of each body
expressed as Li (i = 1 : nb). The derivative primitives
of the body-based mass matrix with respect to a specific
length L j chosen as a design parameter are as below.

dMi
0

dL j
= 0 . . . i �= j (7)

dMi
0

dL j
=

[
dIi

0
dL j

0

0 dmi

dL j

]
. . . i = j (8)

In the above equations, the derivatives of the mass
and inertia of a body are analytical functions of the
length, and hence, can be easily calculated. Further, the
derivative primitive dMi

0/dL j is local to the body, and
there is no coupling with the other bodies in the system.

Although the concept of derivative primitives is ex-
plained here through an analytical expression, they
need not always be generated analytically. In many
cases, multibody systems consist of components with
non-standard geometries, and the mass and inertia
properties of such components are developed experi-
mentally or from solid modeling (CAD) packages. In
such cases, the mass and inertia properties, or their de-
pendence on a design parameter, cannot be expressed
analytically. However, in such cases, it would still be
possible to generate the derivative primitives through
other means. In cases where the components are de-
signed using software packages, the derivative primi-
tives may be generated numerically through a simple
finite difference method. Alternately, the derivative
primitives may also be developed empirically.

The generation of the derivative primitives is a pre-
processing step to the use of this algorithm and needs
to be developed only once for the whole simulation.
Thus, for the purposes of this algorithm, no distinction
is made whether the derivative primitives are devel-
oped analytically, numerically, empirically, or using any
other methods. The choice of the design parameters

and the calculation of the derivative primitives have
been previously studied in Serban and Haug (1998)
and Hsu and Anderson (2002), and this topic is not
pursued further here. Without loss of generality, it is
therefore assumed that, for a system of interest, the
desired derivative primitives can be independently cal-
culated locally on each body, are temporally invariant,
are calculated as a preprocessing step to the simulation,
and are henceforth treated as known quantities.

3.1 Brief overview of DCA

In the analytical treatment presented here, direction
cosine matrices and transformations between different
bases are not shown explicitly. However, appropriate
basis transformations have to be taken into account for
proper implementation of this algorithm. Additionally,
this algorithm uses a redundant set of mixed coor-
dinates, viz. Cartesian coordinates and relative coor-
dinates, throughout the derivation. The set of mixed
coordinates offers certain advantages within this for-
mulation and has been used in Kim and VanderPloeg
(1986) and Nikravesh (1990) for rigid body dynamics.

Consider two representative bodies, body k and
body k+1, of any articulated system as shown in Fig. 1.
The joint between body k and body k+1 is referred to
as Jk. Henceforth, any point on the body through which
the interactions of the body with the environment can
be modeled would be referred to as a handle. The
handles on a body can correspond to a joint location,
a center of mass, or any desired reference point. The
two handles on body k corresponding to the locations
Hk

1 and Hk
2 are associated with joints Jk−1 and Jk,

respectively. Similarly, the two handles on body k+1
corresponding to the locations Hk+1

1 and Hk+1
2 are asso-

ciated with joints Jk and Jk+1. Further, the acceleration
of the handles Hk

1 and Hk
2 and the constraint forces

acting on these points on body k will be denoted by the
superscript k and subscripts 1 and 2, respectively.

In the most general form, the equations of motion
for body k using a spatial Newton–Euler formulation
can be expressed as

Mk
0Ak

0 = Fk
0 (9)

where

Mk
0 =

[
Ik

0 0
0 mk

]
, Ak

0 =
[
αk

0
ak

0

]
, Fk

0 =
[
τ k

0
f k
0

]
(10)

In the above equations, the subscript 0 denotes the
center of mass of the body, while superscript k indicates
that the quantity is associated with representative body
k. In (9) and (10), Mk

0 is the 6 × 6 spatial inertia matrix
of k defined relative to a reference frame located at the
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Fig. 1 Representative bodies
of a multibody system

body k body k+1

Joint Free-Motion Subspace P J
k

Assembly of

body k & body k+1

Relative motion embedded in inertia coupling 
terms and constraint  forces at the boundary

b  Assembly of bodies k and k+1a  Representative bodies of an articulated system

F1c
k

F2c
k+1

F2c
k F1c

k+1

F2c
k+1

F1c
k

H1
k

H2
k H1

k+1

H2
k+1

H1
k

H2
k+1

point 0. It is composed of the 3 × 3 inertia matrix of
body k about its mass center, the 3 × 3 diagonal mass
matrix mk in which each diagonal element of the matrix
is equal to the mass of body k, and 3 × 3 zero matrices
0. The quantity Ak

0 is the 6 × 1 spatial acceleration as-
sociated with the center of mass of body k in the inertial
reference frame N. This matrix is composed of the 3 × 1
angular acceleration vector αk of body k in N and the
translational acceleration ak

0 of the body k mass center
in N. Similarly, Fk

0 is the resultant spatial loads matrix
associated with all loads (applied and constraint) acting
on body k. This matrix is composed of the resultant
torque τ k

0 acting on body k with the resultant force f k
0

acting on k with a line of action through the center of
mass of k. The total spatial load acting at the center
of mass consists of state-dependent active loads such
as actuators, loads from potential fields, and constraint
forces arising from the joints. These constraint forces
depend on the dynamics of the entire system, and
hence, introduce coupling between the equations of
motion of all bodies in the system. The active forces,
on the other hand, are uncoupled and can be calculated
independently on each body based on the state of the
system. Thus, (9) can be written with Fk

0 expressed
explicitly in terms of the known active loads contained
in Fk

a and the unknown constraint loads arising from
joints Jk and Jk+1 as Fk

1c and Fk
2c as

Mk
0Ak

0 = Sk0k1Fk
1c + Sk0k2Fk

2c + Fk
a (11)

Where

Sk0k1 =
[

U rk0k1×
0 U

]

6×6

(12)

And

Sk0k2 =
[

U rk0k2×
0 U

]

6×6

(13)

In the following description, a single body is assumed
to have only two handles. However, this approach can
be easily extended to bodies with multiple handles. The
spatial equations of motion for body k can thus be
written as

Ak
1 =

[
αk

ak
1

]

(6×1)

= ζ k
11 Fk

1c + ζ k
12 Fk

2c + ζ k
13 (14)

Ak
2 =

[
αk

ak
2

]

(6×1)

= ζ k
21 Fk

1c + ζ k
22 Fk

2c + ζ k
23 (15)

The above equation set is henceforth referred to as
the two-handle equations of motion of representative
body k. Ak

1 and Ak
2 are then the spatial accelerations of

body k for handles Hk
1 and Hk

2 , respectively. The terms
ζ k

ij (i, j = 1, 2) correspond to inertia coupling terms at
the joint locations on body k. Fk

1c and Fk
2c are the

unknown spatial constraint loads acting on the body k
at the handles Hk

1 and Hk
2 , respectively, defined as

Fk
1c =

[
τ k

1c
f k
1c

]

(6×1)

and Fk
2c =

[
τ k

2c
f k
2c

]

(6×1)

(16)

with τ k
ic (3×1) and f k

ic (3×1) (i = 1, 2), representing the
constraint torques and constraint forces, respectively,
being imposed at handles Hk

i . The active forces at the
joint are state-dependent and are treated as known
quantities. These are coupled together with the state-
dependent inertia forces and expressed as ζij (i =
1, 2; j = 3). Similarly, the two-handle equations of
motion for body k+1 can be written in the form

Ak+1
1 = ζ k+1

11 Fk+1
1c + ζ k+1

12 Fk+1
2c + ζ k+1

13 (17)

Ak+1
2 = ζ k+1

21 Fk+1
2c + ζ k+1

22 Fk+1
2c + ζ k+1

23 (18)
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The spatial accelerations Ak
2 and Ak+1

1 occurring at
each end of joint Jk are related kinematically by

Ak+1
1 = Ak

2 + PJk
u̇Jk + ṖJk

uJk
(19)

PJk
is the 6 × νk matrix of the free modes of motion,

permitted by the νk degrees of freedom joint Jk with
each column of the matrix PJk

being synonymous with
the spatial partial velocities. u̇Jk

is the νk × 1 matrix of
the time derivatives of associated generalized speeds.

In the absence of a kinematic joint, two bodies can
move with respect to each other through 6 degrees of
freedom. So the motion map between the bodies is a
rank 6 matrix. A kinematic joint constrains the rela-
tive motion between two bodies, allowing only certain
degrees of freedom while constraining out the others.
Thus, the kinematic joint partitions the six-dimensional
relative motion map between two bodies into free
modes of motion described by the matrix PJk

, which
is of dimension 6 × νk and its orthogonal complement
DJk

of dimension 6 × (6 − νk). Columns of PJk
and νk

are the spatial partial velocities and degrees of freedom
for the joint k, respectively. The joint allows relative
motion in the space spanned by the columns of the PJk

.
The joint cannot support a constraint load in the space
spanned by PJk

. However, the constrained degrees of
freedom are mapped by the columns of DJk

, and the
joint can support constraint loads in the space spanned
by DJk

. For example, with a spherical joint, the trans-
lational degrees of motion are constrained while the
rotational degrees of freedom are maintained. Hence,
the corresponding maps may be given by

PJk =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
DJk =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
(20)

From a linear algebra point of view, the joint motion
map PJk

can also be interpreted as the 6 × νk matrix
that maps the νk generalized speeds u at the joint into
a 6 × 1 column matrix of spatial relative velocity across
the joint.

It is apparent from their definitions that DJk
and

PJk
for any representative kinematic joint between

two connected bodies k and k + 1 satisfy the following
orthogonality relations

(DJk
)T PJk = 0 and (PJk

)T DJk = 0 (21)

The DCA consists of two distinct processes, a hier-
archic assembly process and a hierarchic disassembly

process. In the hierarchic assembly process, using rela-
tionships in (19) and (21), the two-handle equations of
motion of two successive bodies are coupled together
to form the two-handle equations of motion of the
resulting assembly. If we consider the assembly formed
from successive bodies k and k + 1, as shown in Fig. 1,
then the assembled two-handle equations are

Ak
1 = ϒk:k+1

11 Fk
1c + ϒk:k+1

12 Fk+1
2c + ϒk:k+1

13 (22)

Ak+1
2 = ϒk:k+1

21 Fk
1c + ϒk:k+1

22 Fk+1
2c + ϒk:k+1

23 (23)

The two handles of the resulting assembly are Hk
1

and Hk+1
2 , and the constraint loads are those acting

on the resulting assembly at those handles as indicated
in Fig. 1b. The inertia coupling terms for the resulting
assembly, ϒk:k+1

ij , are calculated using recursive formu-
lae described in Featherstone (1999a) and Mukherjee
and Anderson (2007). The assembly process starts from
individual body level and moves upward in a binary
tree fashion (Fig. 1) until we end up with a single all-
encompassing assembly as the root node of the binary
tree. The two-handle equations associated with this
root node are

A1
1 = ϒ1:nb

11 F1
1c + ϒ1:nb

12 Fnb
2c + ϒ1:nb

13 (24)

Anb
2 = ϒ1:nb

21 F1
1c + ϒ1:nb

22 Fnb
2c + ϒ1:nb

23 (25)

where 1:nb refers to the entire assembled system con-
sisting of nb bodies and the two handles correspond
to the boundary joints of the articulated system. These
two-handle equations of motion can now be solved
for general topologies including free-floating chains,
chains anchored at one end or at both ends using the
methodologies described in Featherstone (1999a) and
Mukherjee and Anderson (2007).

The hierarchic disassembly process begins with the
solution of the two-handle equations of motion of the
root node. From this solution, the spatial accelerations
and constraint forces acting on the two handles of the
single assembly are known. The spatial accelerations
and constraint forces generated by solving the two-
handle equations of an assembly are identically the val-
ues of the spatial accelerations and constraint forces on
one handle on each of the two constituent assemblies.
From these known quantities, the two-handle equations
of motion of the constituent assemblies can be easily
solved for the spatial constraint force and acceleration
at the connecting joint. Thus, the hierarchic disassem-
bly process continues till all the unknown quantities in
all the subassemblies are completely known.
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3.2 Sensitivity formulation

From the previous section, the two-handle equations of
motion of a body k can be written as follows

Ak
1 = ζ k

11Fk
1 + ζ k

12Fk
2 + ζ k

13 (26)

Ak
2 = ζ k

21Fk
1 + ζ k

22Fk
2 + ζ k

23 (27)

In the above equations, the matrices ζ k
11 and ζ k

22 are sym-
metric positive definite (SPD), and the matrices ζ k

12 and
ζ k

21 are transposes of each other. The matrices ζ k
13 and

ζ k
23 include the terms that are state-dependent (for, e.g.,

the active forces) and can be calculated independently
on each body. Similar expressions for body k + 1 can be
written as

Ak+1
1 = ζ k+1

11 Fk+1
1 + ζ k+1

12 Fk+1
2 + ζ k+1

13 (28)

Ak+1
2 = ζ k+1

21 Fk+1
1 + ζ k+1

22 Fk+1
2 + ζ k+1

23 (29)

Let pj represent any design variable with respect to
which the sensitivity of the dynamic system’s objective
function J is to be calculated. For a dynamic system,
pj may be a mass or inertia value, geometric constant
such as length, radius, or active force among others.
Differentiating (26) and (27) with respect to pj, the
following equations are derived.

dAk
1

dpj
= dζ k

11

dpj
Fk

1 + ζ k
11

dFk
1

dpj

+ dζ k
12

dpj
Fk

2 + ζ k
12

dFk
2

dpj
+ dζ k

13

dpj
(30)

dAk
2

dpj
= dζ k

21

dpj
Fk

1 + ζ k
21

dFk
1

dpj
+

+ dζ k
22

dpj
Fk

2 + ζ k
22

dFk
2

dpj
+ dζ k

23

dpj
(31)

With

d(Mk
0)

−1

dpj
= −(Mk

0)
−1 dMk

0

dpj
(Mk

0)
−1 (32)

In the above equations, the terms dζ k
ij /dpj can be

easily obtained from d(Mk
0)/dpj and dSk0ki/dpj lo-

cally on each body, as there is no coupling in these
terms from other bodies in the system. These terms are
zero when pj is a design variable that is not local to the
body k. The other terms, viz. dFk

i /dpj and dAk
i /dpj

(i = 1 : 2), cannot be calculated locally on each body, as
these depend on the coupling between different bodies
in the system. Further, by solving the equations of
motion (26) and (27) at any instant, the terms Fk

i (i =
1 : 2) are generated. Thus, having solved the equations
of motion at any instant, (30) and (31) reduce to the
following form with the only unknowns at each body
being the terms dFk

i /dpj and dAk
i /dpj (i = 1 : 2).

dAk
1

dpj
= �k

11
dFk

1

dpj
+ �k

12
dFk

2

dpj
+ �k

13 (33)

dAk
2

dpj
= �k

21
dFk

1

dpj
+ �k

22
dFk

2

dpj
+ �k

23 (34)

where

�k
13 = dζ k

11

dpj
Fk

1 + dζ k
12

dpj
Fk

2 + dζ k
13

dpj
(35)

and

�k
23 = dζ k

21

dpj
Fk

1 + dζ k
22

dpj
Fk

2 + dζ k
23

dpj
(36)

with

�k
ij = dζ k

ij

dpj
for i , j = 1:2 (37)

The corresponding equations for body k + 1 can be
expressed as

dAk+1
1

dpj
= �k+1

11

dFk+1
1

dpj
+ �k+1

12

dFk+1
2

dpj
+ �k+1

13 (38)

dAk+1
2

dpj
= �k+1

21

dFk+1
1

dpj
+ �k+1

22

dFk+1
2

dpj
+ �k+1

23 (39)

Thus, (26) and (27) and (33) and (34) are in the
same analytical form, albeit with different quantities
in the equations. Further, (33) and (34) are obtained
in the desired form only if (26) and (27) have already
been solved. Thus, the basic procedure is: (1) solve the
dynamics equations of motion to generate the values
of the constraint forces at each body; (2) substitute
the values for the constraint forces in (30) and (31) to
generate (33) and (34). These are now the sensitivity
equations of each body that need to be solved.
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4 Two-handle generalized inertia

The relative acceleration between two joint locations
on successive bodies k and k + 1 can be expressed in
terms of the free modes of motion matrix PJk

and the
generalized speeds at the joint uJk

as

Ak+1
1 − Ak+1

2 = PJk
u̇Jk + ṖJk

uJk
(40)

Differentiating the above equation with respect to
parameter pj,

dAk+1
1

dpj
− dAk

2

dpj
= PJk du̇Jk

dpj

+ dPJk

dpj
u̇Jk + ṖJk duJk

dpj
+ dṖJk

dpj
uJk

︸ ︷︷ ︸
Locally Generated

(41)

⇒ dAk+1
1

dpj
− dAk

2

dpj
= PJk du̇Jk

dpj
+ � (42)

where

� = dPJk

dpj
u̇Jk + dṖJk

dpj
uJk + ṖJk duJk

dpj
(43)

In the above equations, locally generated terms de-
pend only on the state sensitivities and can be treated
as known quantities. Further, from Newton’s third law,
the loads acting through joint Jk as seen by bodies k
and k + 1 are equal and opposite.

Fk
2 = −Fk+1

1 ⇒ dFk
2

dpj
= −dFk+1

1

dpj
(44)

Substituting the expressions for dAk
2/dpj and

dAk+1
1 /dpj from (34), (35), (36), (37), (38), and (39)

into (41), respectively, and using the relationships (21),
the following expressions can be derived:

dAk+1
1

dpj
− dAk

2

dpj
= �k+1

11

dFk+1
1

dpj
+ �k+1

12

dFk+1
2

dpj
+ �k+1

13

−�k
21

dFk
1

dpj
− �k

22
dFk

2

dpj
− �k

23 (45)

⇒
[
�k+1

11 +�k
22

] dFk+1
1

dpj
=

[
�k

21
dFk

1

dpj
−�k+1

12

dFk+1
2

dpj

+ �k
23−�k+1

13

+PJk du̇
dpj

+�

]
(46)

Pre-multiplying (46) by (DJk
)T and calling on the or-

thogonality condition between DJk
and PJk

,

(DJk
)T

[
�k+1

11 + �k
22

] dFk+1
1

dpj

= (DJk
)T

[
�k

21
dFk

1

dpj
+�k

23

− �k+1
13 − �k+1

12

dFk+1
2

dpj
+ �

]

+ (DJk
)T PJk

︸ ︷︷ ︸
0

du̇
dpj

(47)

From the definition of the orthogonal complement of
joint motion subspace, the constraint force Fk+1

1 can
be expressed in terms of the measure numbers of the
constraint torques and constraint forces as

Fk+1
1 = DJk

Fk+1
1 (48)

⇒ dFk+1
1

dpj
= dDJk

dpj
Fk+1

1 + DJk dFk+1
1

dpj
(49)

where the constraint force and constraint moment mea-
sure numbers f̃1c

k+1
and ˜τ1c

k+1, respectively, are repre-
sented as

Fk+1
1 =

[
˜τ1c

k+1

f̃1c
k+1

]
(50)

Substituting this into (47), an expression for
dFk+1

1 /dpj can be derived as below:

DJk T [
�k+1

11 + �k
22

](
dDJk

dpj
Fk+1

1 + DJk dFk+1
1

dpj

)

= DJk T
[
�k

21
dFk

1

dpj
+�k

23−�k+1
13 −�k+1

12

dFk+1
2

dpj
+�

]

(51)

⇒ dFk+1
1

dpj
= X

[
�k

21
dFk

1

dpj
+ �k

23 − �k+1
12

dFk+1
2

dpj

−�k+1
13

]
− dDJk

dpj
Fk+1

1 (52)

where X = DJk
([DJk ]T [�k

22 + �k+1
11 ]DJk

)−1[DJk]T

(53)
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Substituting this expression for dFk+1
1 /dpj and

dFk
2 /dpj into (33), (34), (35), (36), (37), (38), and (39),

the following are obtained:

dAk
1

dpj
= �k:k+1

11

dFk
1

dpj
+ �k:k+1

12

dFk+1
2

dpj
+ �k:k+1

13 (54)

dAk+1
2

dpj
= �k:k+1

21

dFk
1

dpj
+ �k:k+1

22

dFk+1
2

dpj
+ �k:k+1

23 (55)

In substituting the expression for the derivative of the
constraint load at the common joint, the equations of
the derivatives of the spatial accelerations of the two
bodies are coupled together to form the corresponding
equations of the resulting assembly. In the resulting
assembly, the two joints that connect the assembly to
its parent and child bodies (or assemblies) are Jk

1 and
Jk+1

2 . The �k:k+1
ij are the inertia coupling terms of the

assembly of bodies k and k + 1 given by

�k:k+1
11 = [

�k
11 − �k

12X�k
21

]
(56)

�k:k+1
12 =

[
�k

12X�k+1
12

]
(57)

�k:k+1
13 =

[
�k

13 − �k
12X�k+1

13

]
(58)

�k:k+1
21 =

[
�k+1

21 X�k
21

]
(59)

�k:k+1
22 =

[
�k+1

22 − �k+1
21 X�k+1

12

]
(60)

�k:k+1
23 =

[
�k+1

23 + �k+1
21 X�k+1

23

]
(61)

5 Hierarchic assembly–disassembly

In the previous section, a set of recursive formulae
were derived that may be used to couple together the
sensitivity equations of two adjacent bodies to form
the corresponding equations of the resulting assem-
bly. In the associated manipulations, the two bodies
are coupled together to form an assembly by express-
ing the derivative of the intermediate (common) joint
constraint load with respect to the design variable in
terms of the corresponding derivatives of the constraint
forces at the other two handles. This process can now
be repeated for all bodies in the system where the
equations of two successive bodies or assemblies are
coupled together using the recursive formulae to obtain
the corresponding equations of the resulting assembly.
This process works hierarchically exploiting the same
structure as that of a binary tree.

This process begins at the level of individual bodies
of the system. Adjacent bodies of the system are hierar-
chically assembled to construct a binary tree as shown

in Fig. 2. Individual bodies that make up the system
form the leaf nodes of the binary tree. The sensitivity
equations of motion of a pair of bodies are coupled
together using the recursive set of formulae (56), (57),
(58), (59), (60), and (61) to form the corresponding
equations of the resulting assembly. The resulting as-
sembly now corresponds to a node of the next level in
the binary tree. Working along the binary tree in this
hierarchic assembly process, only a single assembly is
left at the root node of the binary tree. The root node
corresponds to the two-handle representation of the
entire articulated system modeled as a single assem-
bly. The sensitivity equations of this root node can be
expressed as

dA1
1

dpj
= �1:nb

11
dF1

1

dpj
+ �1:nb

12
dFnb

2

dpj
+ �1:nb

13 (62)

dAnb
2

dpj
= �1:nb

21
dF1

1

dpj
+ �1:nb

22
dFnb

2

dpj
+ �1:nb

23 (63)

Here, the superscript 1:nb is used to denote the whole
system being represented as a single entity as the root
node of the binary tree. In this case, the handles 1
and 2 of this entity are the boundary joints of the
articulated system. Similarly, the derivatives of the spa-
tial constraint loads are those of the spatial constraint
loads arising from the interaction of the system with its
boundaries. The above equations represent two sets of
equations in terms of four sets of unknowns, i.e., the
derivatives of the spatial accelerations at the boundary
joints dA1

1/dpj and dAnb
2 /dpj and the derivatives of

the corresponding constraint loads and dF1
1 /dpj and

dFnb
2 /dpj . Consider the three following scenarios that

may arise for a system.

1 2 3 4 5 6

1+2 3+4 5+6

1+2+3+4 5+6

1+2+3+4+5+6
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Fig. 2 The hierarchic assembly and disassembly process using
binary tree structure
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5.1 Free floating

This case corresponds to a system that is free floating,
i.e., there are no kinematic joints connecting the system
to the inertial frame. In the absence of any kinematic
joints at either boundary, there are no constraint forces
that can act on the system at the boundaries. In this
case, in (62) and (63), the constraint loads terms are all
zero, and hence, their derivatives are always zero. From
this, the derivatives of the spatial accelerations can be
easily solved as

dA1
1

dpj
= �1:nb

13 and
dAnb

2

dpj
= �1:nb

23 (64)

5.2 Anchored at one end by kinematic joint

In this case, the system is connected to the inertial
frame by a kinematic joint at one end while the other
end is free floating. For such a system, there is no
constraint load acting at the free end, and in (62) and
(63), the term dFnb

2 /dpj = 0, and hence, its deriva-
tive is also always zero. However, at the other end, the
system will experience a constraint load because of the
presence of the kinematic joint and its derivative needs
to be accounted for. The equations in this case reduce
to

dA1
1

dpj
= �1:nb

11
dF1

1

dpj
+ �1:nb

13 (65)

dAnb
2

dpj
= �1:nb

21
dF1

1

dpj
+ �1:nb

23 (66)

From the definition of the kinematic joint and its
joint motion map, there exist the following kinematic
relations:

dA1
1

dpj
= P1 du̇1

dpj
+ dP1

dpj
u̇1 + d(Ṗ1u1)

dpj︸ ︷︷ ︸
Locally generated

(67)

⇒ dA1
1

dpj
P1 du̇1

dpj
+ � (68)

where

� = dP1

dpj
u̇1 + d(Ṗ1u1)

dpj
(69)

Further, from the definition of the orthogonal com-
plement of the joint motion map, the constraint load at
the handle can be expressed as

F1
1 = D1F1

1 ⇒ dF1
1

dpj
= dD1

dpj
F1

1 + D1 dF1
1

dpj
(70)

Substituting (67), (68), (69), and (70) into (65) and
(66), the following are derived.

P1 du̇1

dpj
+ � = �1:nb

11 [dD1

dpj
F1

1 + D1 dF1
1

dpj
] + �1:nb

13 (71)

⇒ P1 du̇1

dpj
= �1:nb

11 [dD1

dpj
F1

1 + D1 dF1
1

dpj
] + �1:nb

13 −� (72)

Using the orthogonality relation between P1 and D1,
the derivative of the generalized speed at the joint as
well as that of the constraint load can be solved from
(72) as

D1T
P1

︸ ︷︷ ︸
0

du̇1

dpj
= D1T

�1:nb
11 D1 dF1

1

dpj

+ D1T
[
�1:nb

11
dD1

dpj
F1

1 + �1:nb
13 − �

]
(73)

⇒ dF1
1

dpj
= −D1

[
(D1)T�1:nb

11 D1
]−1

(D1)T

×
[
�1:nb

11
dD1

dpj
F1

1 + �1:nb
13 − �

]
(74)

⇒ du1

dpj
= P1

[
(P1)T(�1:nb

11 )−1 P1
]−1

(P1)T

×
[
�1:nb

11
dD1

dpj
F1

1 + �1:nb
13 − �

]
(75)

Substituting (74) and (75) into (65) and (66), the
derivatives of the boundary spatial accelerations, i.e.,
dA1

1/dpj and dA1
1/dpj , can be easily calculated.

5.3 Anchored at both ends by kinematic joints

In this case, the system is connected to the inertial
frame by a kinematic joint at both ends, and the sys-
tem reduces to a kinematically closed-loop topology.
For such a system, there are constraint loads acting at
both ends due to the kinematic joints. In this case, the
sensitivity equations for the system remain

dA1
1

dpj
= �1:nb

11
dF1

1

dpj
+ �1:nb

12
dFnb

2

dpj
+ �1:nb

13 (76)

dAnb
2

dpj
= �1:nb

21
dF1

1

dpj
+ �1:nb

22
dFnb

2

dpj
+ �1:nb

23 (77)
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Similar to the previous situation, the following kine-
matic relations exist between the boundary joints and
their joint motion maps.

dA1
1

dpj
= P1 du̇1

dpj
+ dP1

dpj
u̇1 + d(Ṗ1u1)

dpj︸ ︷︷ ︸
Locally generated

and

dAnb
2

dpj
= Pnb du̇nb

dpj
+ dPnb

dpj
u̇nb + d(Ṗnb unb )

dpj︸ ︷︷ ︸
Locally generated

(78)

⇒ dA1
1

dpj
= P1 du̇1

dpj
+ �1

and

dAnb
2

dpj
= Pnb du̇nb

dpj
+ �2 (79)

where

�1 = dP1

dpj
u̇1 + d(Ṗ1u1)

dpj

and

�2 = dPnb

dpj
u̇nb + d(Ṗnb unb )

dpj
(80)

Further, from the definition of the orthogonal com-
plement of the joint motion map, the constraint load at
the handle can be expressed as

F1
1 = D1F1

1 ⇒ dF1
1

dpj
= dD1

dpj
F1

1 + D1 dF1
1

dpj
(81)

Fnb
2 = Dnb Fnb

2 ⇒ dFnb
2

dpj
= dDnb

dpj
Fnb

2 + Dnb dFnb
2

dpj

(82)

Substituting (79) into (76) and (77) and absorbing
the terms �i into the �1:nb

i3 term (i = 1 : 2), one obtains

P1 du̇1

dpj
= �1:nb

11
dF1

1

dpj
+ �1:nb

12
dFnb

2

dpj
+ �1:nb

13 (83)

Pnb du̇nb

dpj
= �1:nb

21
dF1

1

dpj
+ �1:nb

22
dFnb

2

dpj
+ �1:nb

23 (84)

Multiplying the above equations by (D1)T and
(Dnb )T , respectively, and calling on the orthogonality
relation, the following are obtained.

0︷ ︸︸ ︷
(D1)T P1 du

dpj

1

= (D1)T
[
�1:nb

11
dF1

1

dpj

+ �1:nb
12

dFnb
2

dpj
+ �1:nb

13

]
= 0 (85)

(Dnb )T Pnb
︸ ︷︷ ︸

0

dunb

dpj
= (Dnb )T [�1:nb

21
dF1

1

dpj

+ �1:nb
22

dFnb
2

dpj
+ �1:nb

23 ] = 0 (86)

Substituting the expressions for the derivatives of the
constraint loads from (81) and (82) into (85) and (86),
one obtains

(D1)T�1:nb
11 D1 dF1

1

dpj
+ (D1)T�1:nb

12 Dnb dFnb
2

dpj

+(Dnb )T
[
�1:nb

11
dD1

dpj
F1

1 + �1:nb
12

dDnb

dpj
Fnb

2

+�1:nb
13

]
= 0 (87)

(Dnb )T�1:nb
21 D1 dF1

1

dpj
+ (Dnb )T�1:nb

22 Dnb dFnb
2

dpj

+(Dnb )T
[
�1:nb

21
dD1

dpj
F1

1 + �1:nb
22

dDnb

dpj
Fnb

2

+�1:nb
23

]
= 0 (88)

In these equations, (D1)T�1:nb
11 D1 and (Dnb )T�1:nb

22
Dnb are SPD matrices, and there is no problem associ-
ated with their inversion. For notational convenience,
the above equations can be represented compactly in
matrix form as
[
χ11 χ12

χ21 χ22

] [
dF1

1/dpj

dFnb
2 /dpj

]
= −

[
χ13

χ23

]
(89)

where the corresponding χij can be derived from the
above equation. The matrix in (89) is also SPD with
χ12 = χT

21. The above set of equations can now be easily
solved. Having solved the above equations for the val-
ues of dF1

1/dpj and dFnb
2 /dpj , the corresponding ex-

pression for dF1
1 /dpj and dFnb

2 /dpj can be obtained
from (81) and (82). At this point, the derivatives of
both constraint loads on the boundary joints are known.
Consequently, (76) and (77) of the root node can be
solved to obtain the derivatives of the spatial accel-
erations dA1

1/dpj and dA1
1/dpj at the corresponding

joints.
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Thus, in all three cases, the derivatives of the spatial
accelerations and the constraint loads at the boundary
joints can be calculated. This initiates the hierarchic dis-
assembly process. The derivatives of the spatial accel-
erations and the constraint loads generated by solving
the sensitivity equations of an assembly are identically
the values of the derivatives of the spatial accelera-
tions and the constraint loads on one handle on each
of the two constituent assemblies. From these known
quantities, the sensitivity equations of the constituent
assemblies can be solved to obtain the derivatives of the
spatial accelerations and that of the constraint loads at
the connecting joint. For example, for a representative
assembly made from body k and body k+1, the sensi-
tivity equations are given by (54) and (55). On solving
these equations, the quantities dAk

1/dpj , dAk+1
2 /dpj ,

dFk
1 /dpj , and dFk+1

2 /dpj are generated. These quan-
tities are then substituted into the sensitivity equations
of the constituent sub-assemblies body k and body k+1.
Thus, knowing the values of dAk

1/dpj and dFk
1 /dpj ,

(33) and (34) can be solved, while from dAk+1
2 /dpj

and dFk+1
2 /dpj , (38) and (39) can also be solved. This

process is repeated in a hierarchic disassembly of the bi-
nary tree where the known derivatives of the boundary
conditions are used to solve the sensitivity equations of
the immediate sub-assemblies, until derivatives of the
spatial acceleration and constraint forces on all bodies
in the system are calculated.

6 Discussion

In the previous section, the method for calculating
the sensitivities of multibody dynamics systems in the
three general topologies is described. These topologies
include free-floating kinematic chains, kinematic chains
anchored at one end, and topologies with kinemati-
cally closed loops. The sensitivity analysis is based on
the forward dynamics algorithms (Featherstone 1999a;
Mukherjee and Anderson 2007) and gains from the in-
herent capabilities of these methods. The calculation of
the sensitivities is simplified by exploiting the topology
of the system and the fundamental idea of the joint free
modes of motion map and its orthogonal complement.
The local derivatives used in the algorithm are tem-
porally invariant and exact. These are generated once
during a preprocessing step and introduced into the al-
gorithm as an input. This algorithm works in six sweeps
of the system, traversing the system topology like a
binary tree. The first four sweeps are associated with
formulating and solving the equations of motion for the
forward dynamics problem. The next two sweeps are
associated with the sensitivity analysis and correspond

to the hierarchic assembly and the hierarchic disassem-
bly processes, respectively. These last two sweeps may
additionally be performed concurrently with the final
two sweeps of the forward dynamics formulation if the
concurrent formulation is preferred. The concurrent
formulation is an implementation detail with a minor
manipulation of the equations and is not described in
this paper. The concurrent formulation would reduce
the number of sweeps of the topology from six to four
where the sensitivity analysis could be performed in
lock-step with the forward dynamics problem.

Modeling systems in kinematically closed-loop
topologies has traditionally been an interesting prob-
lem in multibody dynamics because of the presence
of explicit loop closure constraints. Along with the
dynamics equations of motion of an equivalent un-
constrained system, traditional methods maintain the
constraints through an extra set of algebraic equa-
tions, which are used to either (1) reduce out excessive
degrees of freedom producing a minimum dimension
system of equations, or (2) augment the equations of
motion producing a larger dimension system of equa-
tions involving redundant state variables. This gives
rise to two primary problems: (1) the saddle point
problem originating from constraint equations becom-
ing numerically dependent and (2) the accumulation
of integration errors leading to significant drift in con-
straint satisfaction. Because most methods for sensitiv-
ity analysis of multibody dynamics systems are based on
the forward dynamics method, the sensitivity analysis of
these systems suffers from the same drawbacks as the
forward dynamics methods in handling kinematically
closed loops.

However, in the method described in this paper, the
loop closure constraint is modeled using a different ap-
proach. Instead of using explicit constraint equations,
the constraints are implicitly imposed by describing
the topology of the system through the relative co-
ordinates and the use of a set of redundant general-
ized coordinates to enforce the loop closure constraint.
The redundant set of generalized coordinates maintains
the definition of the kinematic joint that converts an
unconstrained system into a constrained system in a
loop configuration. The presence of an extra kinematic
joint introduces an additional orthogonality relation
between the map of the free modes of motion, the joint,
and its orthogonal complement. This allows for the loop
closure constraint to be implicitly imposed. Further,
the use of a redundant set of generalized coordinates
always maintains the correct dimensionality of the sys-
tem equations, making this algorithm free from rank
deficiency issues as all matrices to be inverted are SPD.
This ensures that the algorithm can robustly handle
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what would normally be considered singular configura-
tions. The manner in which this method avoids singular-
ities appears similar, in some regards, to that of Euler
parameters. With Euler parameters, one deals with a
redundant four-member set of generalized coordinates
(parameters) for the global and nonsingular description
of general spatial rotation. The constraints between
these four coordinates are implicitly enforced. If the
constraints were explicitly used to reduce out the extra
generalized coordinate (parameter), the representation
again may become singular. In the same manner, this
algorithm enforces the constraints implicitly, thereby,
avoiding singularities.

The problem of constraint violation is not completely
eliminated in this algorithm because the constraints
are imposed at the acceleration level. However, per-
formance of this algorithm on sample test cases as
discussed in Mukherjee and Anderson (2007) indicates
that the method is able to maintain the constraint vi-
olation growth at a minimum rate and perform com-
parable to (or better than) methods with velocity level
constraint imposition. The imposition of the constraints
at the velocity and position level within the framework
of this algorithm continues to be a research endeavor.

7 Computational complexity and parallel aspects

In the previous sections, the sensitivity analysis for any
given multibody system is explained using six sweeps
traversing the topology of the system. However, as
explained before, the implementation can use four
sweeps where the sensitivity information is generated
concurrently with the solution of the forward dynam-
ics problem. While the concurrent implementation can
further improve the computational efficiency, for ease
of understanding, the discussion is limited to the six-
sweep process.

The generation of the derivative primitives is de-
pendent on the system under consideration and the
design parameters. Consequently, the derivative prim-
itives can be calculated numerically, analytically, or
empirically. The generation of the derivative primitives
is a preprocessing step and needs to be done once
(potentially for an entire family of simulations). Hence,
it is not considered in the computational complexity
of this algorithm. Once the derivative primitives have
been developed, the algorithm proceeds in the same
way as the forward dynamics problem. The forward
dynamics problem is based on the divide-and-conquer
scheme and has been detailed in Featherstone (1999a)
and Mukherjee and Anderson (2007). The sensitivity
analysis method described in this paper cannot function

independent of the forward dynamics problem, as the
sensitivity analysis requires the determination of accel-
erations and the constraint forces before calculating the
sensitivities. Thus, a large number of the entities used
in the sensitivity analysis are already developed for the
forward dynamics problem. Consequently, the first two
sweeps of the method are analogous to the first two
sweeps of the forward dynamics problem.

The additional cost incurred in the sensitivity analy-
sis is associated with the coupling of the sensitivity
equations of successive bodies using the hierarchic
assembly process and then the subsequent solution
of these equations using the hierarchic disassembly
process. In serial implementation, the hierarchic as-
sembly and disassembly processes work recursively and
solve the sensitivity problem in linear or O(n) complex-
ity, where n is the number of degrees of freedom of the
system. The cost associated with the recursive solution
in serial implementation has been studied in detail in
Hsu and Anderson (2002) and is similarly applicable to
this algorithm.

For parallel implementation, this algorithm is
processor and time-optimal, solving the sensitivity
problem in O(log(n)) complexity in the presence of n
processors, where n now is the number of bodies in the
system. In the presence of n processors, each body of
the system is mapped onto a different processor where
the sensitivity problem for that body is formulated. The
mapping of the bodies onto the processors is developed
in a binary tree representation as shown in Fig. 2. The
hierarchic assembly–disassembly process then works
via two traversals of the binary tree. These traversals
work exactly in the same fashion as for the forward dy-
namics problem (Featherstone 1999b) and are achieved
in O(log(n)) complexity. This highly parallel aspect
of the algorithm arises from the nature of the sen-
sitivity equations for individual bodies or assemblies.
As discussed previously, the equations are cast in the
two-handle form where the problem is posed in terms
of the interactions of the body or an assembly with
its boundaries by expressing the internal unknowns
as functions of boundary unknowns. This allows the
assembly–disassembly process to proceed in an order-
independent, concurrent form, facilitating high parallel
efficiency.

In the presence of a modest number of processors,
the system is divided into assemblies equal to the
number of processors available. Within each processor,
the equations of the corresponding assembly can be
formulated in linear complexity to express the problem
in terms of the boundary unknowns of the assembly,
similar to the serial implementation. The calculation
of the boundary unknowns proceeds using the binary
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Fig. 3 Four-bar: closed-loop mechanism

tree representation of the system, where the leaf nodes
now correspond to the assemblies instead of the phys-
ical bodies. This is achieved in logarithmic complexity.
On completing this, the boundary unknowns of every
assembly in the system are known. Using these values,
the sensitivity equations of the bodies in each assembly
can be solved in linear complexity using the recursive
process as in the serial implementation. This linear
complexity process is carried out concurrently for all as-
semblies. The number of bodies in the different assem-
blies and the actual computational gains would depend
on different parameters such as load balancing, multi-
processor architecture, the method for inter-processor
communications, and costs, among implementation-
dependent aspects.

Fig. 4 Sensitivity comparison with reference solution for
du̇1/dLa

Fig. 5 Double pendulum: serial chain

8 Numerical examples

The sensitivity values generated using the algorithm
described above are verified by simulating multibody
system test cases previously presented in literature.
Results from two test cases are presented here. These
test cases were chosen to demonstrate the ability of the
algorithm to accurately generate sensitivity information
for serial chain systems as well as systems with a kine-
matically closed loop.

The first test case is a kinematically closed-loop sys-
tem consisting of three rigid links A, B, and C con-

Fig. 6 Sensitivity comparison with reference solution for
dq1/dLa
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nected by revolute joints to form a four-bar mechanism
as shown in Fig. 3. The system is released from rest
with the initial configuration of q1 = 30, q2 = 44.4775,
and q4 = 45.5225 degrees, respectively, under the effect
of gravity. The length and mass of the links in the
system are La = 1 m, Lb = Lc = 2 m, ma = 10, mb =
mc = 20 kg, and gravity = 9.81. The sensitivity of u̇1

with respect to La (du̇1/dLa) is calculated for a 10-s
simulation and shown in Fig. 4.

The next system considered is a double pendu-
lum moving under the effect of gravity as shown in
Fig. 5. The system parameters are La = Lb = 1 m,
Ma = Mb = 1 m, q1 = q2 = π/30 radians, and gravity =
9.81 m/s2. The mechanism is released from rest. For
this system, the sensitivity of q1 with respect to La

(dq1/dLa) is calculated, and the results are shown in
Fig. 6.

In both cases, the results obtained are compared
against established results obtained from the direct
differential method as described in Anderson and Hsu
(2004). The results obtained using the new algorithm
are in excellent agreement with the reference solutions.
The results clearly demonstrate the ability of the al-
gorithm to provide sensitivity values accurate up to
integration tolerance. For the system in closed-loop
configuration, the method does not suffer from exces-
sive constraint violations.

9 Conclusions

In this paper, a new efficient method is presented for
sensitivity analysis of multibody systems. The method
uses a direct differentiation approach and implements it
in a divide-and-conquer scheme. The method maps the
topology of the system to a binary tree and generates
the sensitivity information using several traversals of
this binary tree. The computational complexity of this
algorithm is expected to be linear and logarithmic in
serial and parallel implementations, respectively. The
method works in tandem with the forward dynam-
ics problem. Consequently, there is no excessive data
storage and no backward integration in this scheme.
Thus, the method does not suffer from numerical issues
associated with perturbations in design variables. The
method is robust and does not suffer from numerical
dependency issues associated with singular configura-
tions. The low computational cost of the algorithm,
its simplicity in implementation, applicability for serial
and closed-loop systems, insensitivity to numerical and
data storage issues, and accuracy of results make this
algorithm a useful tool in sensitivity analysis for multi-
body dynamics systems.
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