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Abstract

This paper presents an algorithm for the efficient numerical analysis and simulation of modest to heavily constrained
multi-rigid-body dynamic systems. The algorithm can accommodate the spatial motion of general multi-rigid-body
systems containing arbitrarily many closed loops inO(n+m) operations overall for systems containingn generalized
coordinates, andm independent algebraic constraints. The presented approach does not suffer from the performance
(speed) penalty encountered by most other of the so-called “O(n)” state-space formulations, when dealing with
constraints which tend to actually showO(n + m + nm + nm2 + m3) performance. Additionally, these latter for-
mulations may require additional constraint violation stabilization procedures (e.g. Baumgarte’s method, coordinate
partitioning, etc.) which can contribute significant additional computation. The presented method suffers less from
this difficulty because the loop closure constraints at both the velocity and acceleration level are directly embedded
within the formulation. Due to these characteristics, the presented algorithm offers superior computing performance
relative to other methods in situations involving both largen andm.

Nomenclature

ak Matrix representation of acceleration of center of massk∗ in the Newtonian reference frameN .
ak

t Acceleration remainder term associated with bodyk in N ; This is all terms ofak which are not explicit in
u̇’s.

Ak The generalized acceleration matrix of bodyk in N .
Āk

That portion of the generalized acceleration matrix of bodyk in N which is explicit in the unknown state
derivativesu̇.

Ak
t That portion of the generalized acceleration matrix of bodyk in N which is not explicit in the unknown state

derivativesu̇.
0iAk The generalized acceleration matrix ofki in reference frame0i, which are associated with closed loopi.
0īAk

That portion of the generalized acceleration matrix ofki in 0i which is explicit in the unknown state deriva-
tivesu̇.

0iAk
t That portion of the generalized acceleration matrix ofki in 0i which is not explicit in the unknown state

derivativesu̇.
C Invertible transformation matrix relatinġq to u.

C k Direction cosine matrix relating the basis vectors fixed in bodyk to those in proximal bodyPr[k].
Dist[k] Distal body set associated with bodyk.
D Matrix used in relatinġq to u, and commonly associated with prescribed motions.
Ei Expansion matrix which convertsmi constraint load measure numbers to constraint load matrixFci

.
Fk Recursive generalized force matrix for bodyk.
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F̂k
Articulated Body Force associated with bodyk.

0iF̂k
Articulated Body Force associated with bodyk for 0i < ki ≤ pi.

f
ci

Matrix representation of constraint force used do closei-th closed loop.
Fci

Constraint load matrixi-th closed loop.

Ik/k∗
Central inertia matrix of bodyk.

Ik Generalized inertia matrix of bodyk.

Îk
Articulated Body Inertiamatrix of bodyk, associated with acceleration̄Ak

.
0iÎk

Articulated Body Inertiamatrix of bodyk, associated with acceleration
0īAk

.

Îk;0i
Articulated Body Inertiamatrix of bodyk, associated with acceleration̄A0i .

k Index representing an arbitrary system bodyk (global numbering).
ki Index representing an arbitrary bodyk within closed loopi (local loop numbering).
k∗ Center of mass of bodyk.
K Right-Hand-Side of system equations of motion, representing applied forces, as well as centripetal and Cori-

olis portions of inertia forces.
m Total number of independent system constraints.
mi Total number of constraints associated with closed loopi.
M System Mass Matrix.
Mk Matrix of terms associated with generalized speeduk which would be found on the diagonal of a partially

triangularized (decomposed) system mass matrix.
n Total number of system generalized coordinates.
ni Total number of generalized coordinates associated withi-th closed loop constraint equations.
nL Total number of closed loops.
N Newtonian reference frame.
0i Base body (primary reference frame) of closed loopi
pi Body containing the highest independent degree-of-freedom (local loop numbering) within closed loopi
Pk

r Partial Velocity matrix for bodyk associated with generalized speedsur.

P̃k

r Nonholonomic Partial Velocity matrix for bodyk associated with independent generalized speedsur.
Pr[k] Proximal (parent) body set associated with bodyk.
q Then× 1 matrix of generalized coordinates used to describe the configuration of the system.
q̇ The first time derivative of the system generalized coordinates.

Rk Matrix representation of resultant of all non-constraint forces acting on bodyk.
S k Basis consistentShift Matrixwhich converts system of forces acting through mass center ofk to equivalent

system acting through point ofk instantaneously coincident with the mass center of it proximal bodyPr[k].
jS k Shiftmatrix which transforms a force system acting through mass center ofk to an equivalent system acting

through point ofk, instantaneously coincident with the mass center of bodyj.
t Time.
tci

Matrix representation of constraint torque used do closei-th closed loop.
T k Matrix representation of all moments acting on bodyk.
T k Local triangularization matrixassociated with bodyk.

T̂ k

i Constraint loadTriangularization Matrixassociated with bodyk and closed loopi.
u The systemgeneralized speedswhich characterize the motion of the system.
uk System generalized speeds which are directly associated with the motion of bodyk relative to its parent body.
u̇ Systemgeneralized accelerationsto be determined and temporally integrated.
u̇k System generalized accelerations which are directly associated with the motion of bodyk relative to its parent

body.
U Appropriately dimensioned identity matrix.
vk∗

Velocity of the center of mass of bodyk in reference frameN .
vk∗

r Partial velocity of the center of mass of bodyk in reference frameN associated withur.
vk∗

t Velocity Remainder Termassociated with the center of mass of bodyk in reference frameN .
Vk The generalized velocity matrix, which relates the velocity of bodyk to reference frameN .
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V̄k
Portion of the bodyk generalized velocity matrix which is explicit in the generalized speedsu.

Vk
t Body k generalized velocity remainder term matrix, which relates the velocity of bodyk to reference frame
N .

0iV k The generalized velocity matrix, which relates the velocity ofki mass center to that of loop base body0i.
0i V̄ k

Portion of the generalized velocity matrix
0iV k, which is explicit in the generalized speedsu.

0iV k
t That portion of the generalized velocity matrix

0iV k, which is not explicit in the generalized speedsu.
αk Angular acceleration of bodyk in Newtonian reference frameN .
αk

t Angular acceleration remainder termsof bodyk; This represents all terms ofαk which are not explicit in
u̇’s.

δj Useful intermediate quantity associated with recursive treatment of dependent generalized speeds and asso-
ciated state derivatives of the closed loop under consideration.

∆ki Useful intermediate quantity associated with recursive treatment of bodyki of the closed loop under consid-
eration.

γγγγγγγγγγγγγk Position vector from bodyPr[k] mass center to bodyk mass center.
Γk Useful intermediate quantity associated with recursive treatment of dependent degrees of freedom of bodyk

within the closed loop under consideration.
ζk

i
Coefficient matrix to unknown constraint load measure numbersλi associated with loopi within expression

for constrained system generalized acceleration.
ζ̄

k

i
Intermediate quantity useful in the recursive determination ofζk

i
.

ηk Portion of Constrained system generalized accelerationsu̇ which is not explicit in constraint load measure
numbersλ.

η̄k Intermediate quantity useful in the recursive determination ofηk.

Θk Intermediate quantity appearing in the solution for coupled loop systems.
λ Lagrange multipliers.
τki Useful intermediate quantity associated with recursive treatment of bodyki of the closed loop under consid-

eration.
Ξk Useful intermediate quantity associated with recursive treatment of dependent degrees of freedom of bodyk

within the closed loop under consideration.
Φ Set ofm system algebraic constraint equations.

Φ,q System constraint Jacobian.

χp+j Useful intermediate quantity associated with recursive treatment of dependent generalized speeds and asso-
ciated state derivativesp+ j of the closed loop under consideration.

Ψ Portion of velocity level constraint equations which is not explicit in generalized speedsu. This term is
usually associated with specified motions.
ψ Portion of acceleration level constraint equations which is not explicit in generalized speeds time derivatives
u̇.

ωωωωωωωωωωωωωk Angular velocity of bodyk in reference frameN .
ωωωωωωωωωωωωωk

r Partial angular velocity of bodyk in reference frameN associated withur.
ωωωωωωωωωωωωωk

t Angular velocity Remainder Termassociated with bodyk in reference frameN .
ωk
× Matrix equivalent to vector cross-productωωωωωωωωωωωωωk×.

1 Introduction

Computational efficiency of multibody system simulations has been receiving increasing attention since the first
O(n) (computational effort per temporal integration step increases as linear function of the number of general-
ized coordinates) algorithm developed by Vereshchagin in 1975 [Vereshchagin, 1975]. This work marked a sig-
nificant departure in potential algorithm computational cost from that possible with more traditional formulations,
which tended to offerO(n3) (the number of computational operations required for each temporal integration
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step increases as a cubic function ofn). Since that ground-breaking work, a myriad of formulations and algo-
rithms have been put forward by individuals whose interests lay in a wide variety of fields [Hollerbach, 1980],
[Walker and Orin, 1982], [Featherstone, 1983], [Nielan, 1986], [Bae and Haug 1, 1987], [Bae and Haug 2, 1987],
[Anderson, 1990], [Rosenthal, 1990], [Schwertassek, 1993], [Banerjee, 1993], [Baraff, 1996], and others. Much of
this has been done in an effort to develop more efficient, yet general simulation algorithms for multibody systems. In
many of these situations, computational efficiency, which manifests itself in the form of computational speed, was of
primary importance.

To this end, researchers have tried to improve the overall computational efficiency through vastly dif-
ferent approaches. Some researchers have pursued improved simulation speed through the use of dif-
ferent dynamic analysis methods for multibody systems, such as the methods based on Newton-Euler
equations [Armstrong, 1979], [Walker and Orin, 1982], Lagrangian equations [Hollerbach, 1980], Kane’s equa-
tions [Anderson, 1990], [Rosenthal, 1990] [Banerjee, 1993], and variational methods [Bae and Haug 1, 1987],
[Bae and Haug 2, 1987]. Others have pursued improved simulation speed through developing new more efficient un-
derlying algorithms for the forward dynamics problem, such asO(n3),O(n2) [Walker and Orin, 1982], [Nielan, 1986]
andO(n) algorithms [Armstrong, 1979], [Featherstone, 1983], [Featherstone, 1987], [Bae and Haug 1, 1987], and
[Baraff, 1996]. While still other researchers have directed their attention to more efficient implementation of mathe-
matical operations within existing formulations. Whichever avenue is pursued, the dynamical equations of motions
are most generally be expressed in the form

u = C(q, t) · q̇ +D(q), (1a)

M(q, t; p) · u̇+ ΦT
,q(q, t; p) · λ = K(q, q̇, t; p), (1b)

Φ(q, t; p) = 0. (1c)

In each of these sets of equationsq represents the set ofn system generalized coordinates, with associated first time
derivativesq̇. The matrixC appearing in equation (1a) is a user specified invertible matrix which maps the setq̇ into the
generalized speeds [Kane and Levinson, 1985]u, which are velocity level quasi-coordinates which can facilitate the
characterization of the motion of the system. By comparison, matrixD in equation (1a) is that portion of the definition
of u which results from specified/prescribed motions which appear within the system. The matrixM is termed the
system ‘mass matrix’ (though the system need not be purely mechanical in nature), whileK is a column matrix
containing contributions of all forcing terms, body loads, as well as centripetal and Coriolis acceleration inertia load
contributions. The quantityΦ ,q is the constraint Jacobian associated with the partial derivative of them independent
algebraic constraint equations represented by (1c) with respect toq.

In Equations (1) the state variables may be redundant, often representing position, orientation, temperature, pres-
sure, voltage, etc. and their respective derivatives. If a redundancy exists, then generalized constraint “forces”λ must
be applied to the system equations of motion (1b) to enforce the algebraic constraint equations (1c).

When traditional state-space dynamic analysis formulations are employed a computational cost ofO(n3), is in-
evitable to produceM explicitly, if special methods are not used. If simple recursive relationships are observed, then
the cost of generatingM can be reduced toO(n2) [Nielan, 1986], [Rosenthal and Sherman, 1986]. However, an ad-
ditionalO(n3) cost is incurred for the mass matrix decomposition required in solving equation (1b) for the unknown
state derivativeṡu by direct methods. This expense may be acceptable for a system involving small to modestn, but
anO(n3) increase in computational cost can become prohibitively expensive for even a modest increase ofn. For-
tunately, this prohibitive operational order can be greatly reduced through the intelligent use of efficient (often lower
computational order) dynamic formulations.

2 Standard Recursive “O(n)” Analysis for Constrained Systems

When analyzing closed loop systems (systems containing kinematic loops) with most state-spaceO(n) formulations,
the closed loop system is first converted to an open tree system. This is accomplished by cutting the closed loops
at specified joints, as indicated in figure (1). At this time a unique path exits from each body to every other body
in the system. To insure that the new tree system still behaves as the original closed loop system, explicit equal and
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opposite constraint forcesfc are added to each side of the cut joints, and the equations of motions are augmented by
the companion set of algebraic constraint equations (1c) which must now be satisfied.

Fc1

Fc2

Fc1

Fc2

(B) Associated Open Loop System

(A) General Multibody System

Loop 1

Loop 2

Figure 1: General Closed Loop System Schematic and Associated Tree System

2.1 Mathematical Preliminaries

To aid in the subsequent development, consider the notation associated with the description of an arbitrary set of
interconnected rigid bodies shown in figure (2). For this system, proximal (parent) bodyPr[k] is connected to its
child bodyk through joint-k, via joint pointsk− andk+ which reside in bodiesPr[k] andk, respectively. Similarly,
thedistal (child) bodies of bodyk are given as members of the set of bodiesDist[k]. The position vectorsk locates
joint-k relative to the mass center of bodyPr[k], while the position vectorr k locates the mass center of bodyk with
respect to the outboard end of this same joint. It will also prove convenient to describe the position of child mass
centerk∗ relative to proximal mass centerPr[k]∗ by the vector�γ k.

The angular velocity of any bodyk with respect to the Newtonian reference frameN , and velocity of its associated
mass centerk∗ may always be written in terms of the generalized speeds as

ωωωωωωωωωωωωωk =
n∑

r=1

ωωωωωωωωωωωωωk
rur + ωωωωωωωωωωωωωk

t (2)

and

vk∗
=

n∑
r=1

vk∗
r ur + vk∗

t . (3)
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Figure 2: Notation Associated with an Arbitrary Set of Interconnected Rigid Bodies

In these expressionsωωωωωωωωωωωωωk
r andvk∗

r are termed therth partial angular velocity of bodyk andrth partial velocity of
point k∗, in N , respectively. These quantities may be thought of as basis vectors for the space of admissible system
velocities and angular velocities, while the associated generalized speeds are the velocity space measure numbers.
Additionally, the termsωωωωωωωωωωωωωk

t andvk∗
t appearing in equations (2)–(3), are referred to as theangular velocity remainder

termof bodyk andvelocity remainder termof pointk∗, inN , respectively. These quantities are most often associated
with specified/prescribed motion, and thus are not associated with the time derivative of a system degree of freedom.

When deriving this method it is often convenient to express quantities in a scalar matrix, as opposed to a tensor
(vector and dyadic) form. For this purpose an arbitrary vectorϑk will be represented in matrix form asϑk, which is
associated with the local dextral orthogonal unit vectorsk̂1, k̂2, k̂3, fixed in bodyk. One may then define thevelocity,
partial velocity, andvelocity remainder termmatrices as

Vk =
[
ωk

vk∗

]
, Pk

r =
[
ωk

r

vk∗
r

]
, and Vk

t =
[
ωk

t

vk∗
t

]
. (4)

With these matrices so defined, equations (2) and (3) may be expressed as

Vk = V̄k + Vk
t =

n∑
r=1

Pk
rur + Vk

t . (5)

One can similarly represent the generalized acceleration matrix of an arbitrary bodyk as defined in previous works
[Anderson, 1990], [Anderson, 1992], as

Ak =
[

Nαk

Nak∗

]
, (6)

whereAk may also be divided into two portions. One is̄Ak
, which contains all terms which are explicit in the

unknown state derivativeṡu and the other is theacceleration remainder termAk
t , which represents all of the other

acceleration terms (and may be calculated directly from the system state), giving

Ak = Āk + Ak
t . (7)

2.2 Recursive Kinematic Relationships

With the generalized velocity, generalized acceleration, and generalized acceleration remainder term matrices so repre-
sented, it is possible to compactly represent the recursive relationships necessary for determining all system kinematic
quantities. As has been demonstrated in [Anderson, 1990] and [Anderson, 1992] we have

Vk =
[
(S k)T V̄Pr[k] + Pk

kuk

]
+ Vk

t , (8)
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and
Ak =

[
(S k)T ĀPr[k] + Pk

ku̇k

]
+ Ak

t . (9)

The quantityS k appearing in equations (8)–(9) is the basis consistent linear transformation matrix

S k =

[
C k C kγ k

×
0 C k

]
6×6 .

(10)

Within this expressionC k ≡ Pr[k]C k is the direction cosine matrix which relates the bodyk basis vectors to those
fixed in its parent bodyPr[k]; 0 is a3 × 3 zero matrix; andγ k

× is the skew symmetric matrix equivalent to the vector

cross product operationγγγγγγγγγγγγγk×. The shift matrix transformationS k converts a system of forces and moments acting
through the center of mass ofk, to an equivalent force system, acting though a point ofk which is instantaneously
coincident with the center of mass ofPr[k].

At this time, it is also convenient to define the bodyk generalized inertiaI k and the bodyk generalized forceF k

matrices

Ik =

[
Ik/k∗

0
0 Mk

]
6×6

, (11)

F k =

[
T k − (I k/k∗

α k
t + ω k

× I
k/k∗

ω k)
Rk −M k a k

t

]
6×1

. (12)

Within these expressions,Ik/k∗
is the3×3 central inertia matrix of bodyk, andMk is the diagonal translational mass

matrix of this same body. By comparisonT k andRk represent the resultant force system of all moments and forces,
respectively, acting on bodyk through its center of massk∗.

2.3 Triangularization of Equations & Standard “O(n)” Treatment of Constraints

In most state space order-n methods the reduction in the computational order of the overall cost of determining values
for the unknown state derivativeṡu is largely accomplished by avoiding the formulation of the coupled set of equa-
tions of motion. The approach further reduces computational burden because it eliminates the need to subsequently
decompose and solve these equations for their unknown state derivatives.

Avoiding the formulation of the explicit coupled system of equations is to a significant part accomplished through
the segregation of accelerations into theknownstate dependent portionAk

t and that portion which is explicit (and

linear) in the unknown state derivatives,Āk
. In this manner, unknown state derivativesu̇ can be isolated and manipu-

lated (triagularized) as the equations are being formed. This allows the equations of motion to be produced in what is
implicitly equivalent to a lower triangular form, where only the diagonal elements of the system triangularized mass
matrix are explicitly calculated.

In a similar manner, the explicit constraint forcesFc, associated with the cut joints which arise in theO(n) treat-
ment of closed loop systems, are recursively treated [Featherstone, 1987] [Bae and Haug 2, 1987], [Anderson, 1990],
[Anderson, 1992], [Jain and Rodrequez, 1995] and others. In these works, the closed loops are cut to produce an asso-
ciated tree system. The explicit constraint forces, which manifest themselves inλ in equation (1b), are then imposed
to insure that the algebraic constraints (loop closure constraints) (1b), are satisfied.

Just as with the accelerations discussed above, the goal here is to segregate the applied forcesT k andRk, in (12),
from the constraint forcesFc. The applied forcesT k andRk, are directly determinable from the force element model
and current system state values. By comparison, the constraint forcesFc are unknown, being linear in the unknown
constraint force measure numbersλ.

The segregation of constraint forces into dependent and independent portions can be accomplished by decomposing
the unknown state derivativesu̇ as

u̇ = η + ζ λ. (13)

The quantityη appearing within (13), is that portion ofu̇which is independent of the constraint force measure numbers
λ, and is exactly the value obtained foru̇ if the constraints (1c) are not enforced. Thus, the quantityζ λmay be thought
of as a correction term to the unconstrained state derivatives.
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The constraint forces have no influence on the kinematic calculations, so they only need be considered during and
after the recursive triangularization portion of theO(n) routines. The kinematic portion of the routine consists of
the kinematic calculations working recursively outward from the system base body (system body without a parent) to
the system terminal bodies (system bodies without children). Once the terminal bodies are reached, the topological
direction with which the calculations proceed reverses, and the routine works recursively inward, from the terminal
bodies to the base-body, forming generalized inertia forces, generalized applied forces, generalized constraint forces,
and triangularizing the equations as they are formed.

Key quantities which aid in representation of the triangularization process are: thearticulated body inertiaand

articulated body force, Î k
andF̂ k

, respectively [Featherstone, 1983]; the local triangularization matrixT k; the tri-

angularization matrix̂T k
; the triangularized mass matrix diagonal elementsMk; and the triangularized constraints

associated with thei-th cut joint (closed loop)̂F k

ci
.

Each of these quantities can be easily determined using the inward (from child to parent) recursive relationships

Îk
= I k +

∑
j∈Dist[k]

T j Î j(S j
)T
, (14)

F̂ k
= F k +

∑
j∈Dist[k]

T jF̂ j
, (15)

T̂ Pr[k]
= T kT̂ k

, (16)

F̂k

ci
= T̂ k

i

(
E iλi

)
, (17)

with

T k = S k
[
U − ÎkPk

kM−1
k

(
Pk

k

)T
]
, (18)

and
Mk =

(
Pk

k

)T ÎkPk
k. (19)

WhereU appearing in (18) is a6 × 6 identity matrix, and the quantityEi appearing in (17) is a6 × mi expansion
matrix which converts themi unknown constraint load measure numbers inλi, associated with thei-th cut joint
(i = 1, 2, . . . , nL), to the associated constraint forcesf

ci
and momentst ci

. Specifically,Ei provides the linear
transformation such that

F ci
=

[
t ci

f
ci

]
= Eiλi. (20)

It can be shown [Anderson, 1990], [Rosenthal, 1990], and [Anderson, 1992] that with thesetriangularizedquan-
tities so defined, the equation of motion directly associated with the generalized speeduk can be given as

(
Pk

k

)T
[
F̂k − Îk(

η̄k +
nL∑
i=1

ζ̄
k

i
λi

)
+

nL∑
i=1

T̂ k

iEiλi

]
= 0, (21)

where
η̄k =

(
S k

)T
η̄Pr[k] + Pk

kη
k, (22)

and
ζ̄

k

i
=

(
S k

)T
ζ̄

Pr[k]

i
+ Pk

kζ
k

i
, (i = 1, . . . , nL). (23)
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2.4 Forward Substitution & Standard “O(n)” Treatment of Constraints

The triangularization procedure works recursively inward from terminal bodies, towards the system base body (that
body of the system which connects the system to the inertial reference frame) producing a system of equations which
are implicitly equal to the triangularized equations. Once the system base body is reached, equations (20)-(23) give
that

η1 = M−1
1

(
P1

1

)T F̂1
, (24)

and

ζ1

i
= M−1

1

(
P1

1

)T T̂ 1

iEi. (25)

All information associated with the right hand sides of equations (24) and (25) is known. Thus the process may
now reverse its direction with respect to the system topology, and recursively perform a forward substitution for the
determination ofηk andζk

i
. This forward substitution process is accomplished through the recursive use of

η̄k =
(
S k

)T
η̄Pr[k] + Pk

kη
k, (26)

ηk = M−1
k

(
Pk

k

)T
[
F̂k − Îk(

S k
)T
η̄Pr[k]

]
, (27)

and
ζ̄

k

i
=

(
S k

)T
ζ̄

Pr[k]

i
+ Pk

kζ
k

i
, (28)

ζk

i
= M−1

k

(
Pk

k

)T
[
T̂ k

iEi − Îk(
S k

)T
ζ̄

Pr[k]

i

]
. (29)

2.5 Standard “O(n)” Treatment of Constraints

Unfortunately, determiningη
(n×1)

andζ
(n×m)

through use of equations (24)–(29), equation (13) still leaves them

unknownsλ (m×1) to be determined. Thus one must make use of them additional constraint equations

(Φ ,q)u = Ψ (30)

which are obtained through the differentiation of equation (1c) with respect to time. Differentiating this expression
once more with respect to time yields

(Φ ,q)u̇ = ψ. (31)

Substituting the expression foru̇, from equation (13), into this expression produces[
Φ ,q ζ

]
λ =

{
ψ − Φ ,q η

}
, (32)

which one may solve to obtain the constraint load measure numbersλ. These values forλ are in turn substituted back
into expression (13), yielding the numerical values foru̇.

2.6 Difficulties with the Standard “O(n)” Treatment of Constraints

If one now looks more closely at the steps involved with the determination of the specific quantitiesη, ζ, andλ, which
are used in determining the unknown state derivativesu̇ it can be seen that: The determination ofη requiresO(n)
operations;ζ requiresO(nm) operations; andλ requiresO(nm + nm2 + m3) operations. As a result, the overall
cost associated with the determination ofu̇ with thesestandardso called “O(n)” approaches is actuallyO(n+ nm+
nm2 +m3).

It should be noted that this cost does not consider the added computation, which may be necessary, for some sys-
tems, to stabilize constraint violation error growth. Methods which may be considered in this regard areBaumgarte’s
method[Baumgarte, 1972],Coordinate Partitioning[Wehage and Haug, 1982], [Wehage, 1988], or other forms of
constraint error stabilization [Park and Chiou, 1988], [Anderson, 1990], [Anderson, 1992], each of which can be
shown to contribute an additionalO(nm2 +m3) operations to the overall computational cost.
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Thus it is apparent that these so-called “O(n)” approaches for closed loop systems may perform very well in
situations where bothn � 1 andn � m. However, ifn andm are comparable in size (i.e.m is O(n)), then
these “O(n)” state space methods actually yieldO(n3) performance, and will often be out performed by other more
traditionalO(n3) methods.

Difficulties which arise in the application of the standard state space “O(n)” approach to moderately (m ∼ n)
constrained, or heavily (m > n) constrained systems have several sources. First, using this more standardO(n)
approach, themi unknown constraint load measure numbersλ, manifesting themselves inF ci

(i = 1, . . . , nL) are
each individually passed (operated on) by eachancestral body(i.e. every body which is in the topological path
between the application point of the constraint load and the system base body). This results in anO(nm) expense for
calculating these constraint force related terms within the equations of motion (13). It would be desirable to reduce, if
not eliminate the need to operate on all constraint load unknowns by so many of the system bodies.

Second, the generation of the system level constraint JacobianΦ ,q, requires potentiallyO(nm) operations. Worse
still, the matrix manipulations, and decomposition and solve operations associated with the determination ofλ, in
equations (31) and (32) requiresO(nm+nm2 +m3) operations. Again, it would be desirable to eliminate the explicit
formulation of equations (31) and (32), and subsequent solution forλ.

Third, as indicated above, a method such as coordinate partitioning, for reducing constraint violation error is
required with an additional computational burden ofO(nm+ nm2 +m3). This cost can be significantly reduced by
effectively applying the method in a more efficient manner, recursively employing it in the original generation of the
constrained equations of motion.

3 Fully Recursive Coordinate Reduction for Closed Loop Systems

The primary computational efficiency gains associated with the newO(n+m) method presented in this paper, relative
to otherO(n) closed loop approaches [Featherstone, 1987], [Bae and Haug 2, 1987], [Anderson, 1990], [Anderson, 1992],
[Anderson, 1993], [Banerjee, 1993], are realized through the local and kinematic manner in which the loops are
treated. To aid in this development, consider the generic closed loopi (i = 1, . . . , nL), shown in figure 3. This
loop development involves many symbols and expressions which are extremely similar in form and meaning to those
which are associated with the global treatment (description) of the system. For this reason, all quantities which are
specifically associated with the treatment of closed loops in this development will be denoted by a subscripti (e.g.k
represents body-k of the system, whileki represents the body-k of the close loopi under consideration).

Loop i

Generic Loop

0i

1i

2i

3i

P - 1i

P + 1i

Pi

Ni
N - 1i

N - 2i

Figure 3: Local Numbering Scheme of Generic Loop
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3.1 Local Closed Loop Kinematics

The process begins by selecting the body which branches to form thei-th closed loop to act as the loop sub-system’s
primary reference frame. This body is locally referred to as theloop base bodyand is given the local body number0i.
The bodies of the loop are then locally numbered consecutively, up through local body numberni. Whereni is the
number of bodies which form thei-th closed loop and the last bodyni is a massless copy (orphantom) of the loop
base body. Figure 4 illustrates the tree representation of the generic loop of figure 3.

Loop i

Generic Loop

0i

1i

2i

3i

P - 1i

P + 1i

Pi

Ni

N - 1i

N - 2i

Virtual Terminal

Body

Phantom Body

(copy of     )0i

Dependent

Coordinates

Figure 4: Tree Representation of the Generic Loop (Figure 3) Using a Phantom Body

Within the closed loop the recursive velocity and acceleration relationships, (8) and (9) still apply. At the terminal
end of the loop, the phantom bodyni must then have zero velocity and acceleration relative to the reference frame
(body)0i. Thus, from equation (8) we have

0iV ni =
(
S ni

)T 0i V̄ ni−1 + Pni
ni
uni

+ 0iV ni
t = 0. (33)

Pre-multiplying (33) through byPni
ni

and then solving for the dependent generalized speedsuni
yields

uni
= −

[
(Pni

ni
)TPni

ni

]−1
{

(Pni
ni

)T
[
(S ni)T 0i V̄ ni−1 + 0iV ni

t

]}
. (34)

Similarly, from equations (9) and (32), we have at the acceleration level

u̇ni
= −

[
(Pni

ni
)TPni

ni

]−1
{

(Pni
ni

)T
[
(S ni)T 0īAni−1 + 0iAni

t

]}
. (35)

Appropriately substituting (34) into (33) produces

τni

[
(S ni)T 0i V̄ ni−1 + 0iV ni

t

]
= 0, (36)

with
∆ni = (Pni

ni
)TPni

ni
, (37)

and
τni = U − Pni

ni
(∆ni)−1(Pni

ni
)T . (38)

11



Continuing the process, we have

τni

[
(S ni)T

{
(S ni−1)T 0i V̄ ni−2 + Pni−1

ni−1uni−1

}
+ 0iV ni

t

]
= 0. (39)

Premultiplying this by(Pni−1
ni−1)

TS ni , then solving the resulting equation foruni−1 yields

uni−1 = −
(
∆ni−1

)−1(Pni−1
ni−1)

TS niτni

[
(S ni)T (S ni−1)T 0i V̄ ni−2 + 0iV ni

t

]
, (40)

where
∆ni−1 = (Pni−1

ni−1)
TS niτni(S ni)TPni−1

ni−1. (41)

Substituting (40) back into (39) yields{
τni − τni(S ni)TPni−1

ni−1

(
∆ni−1

)−1(Pni−1
ni−1)

TS niτni

}[
(S ni)T (S ni−1)T 0i V̄ ni−2 + 0iV ni

t

]
= 0. (42)

Defining the following recursive relationships for intermediate quantities

niS ni = U ⇒ k−1S ni = k−1S k kS ni =S k kS ni (43)

τni+1 = U ⇒ τk =
[
τk+1 − τk+1(kS ni)TPk

k(∆k)−1(Pk
k)T kS niτk+1

]
(44)

∆k = (Pk
k)T kS niτk+1(kS ni)T Pk

k. (45)

we write the recursive relationships
0i V̄ k = δk 0i V̄ k−1 + χk 0iV ni

t , (46)

and
uk = −

(
∆k

)−1(Pk
k

)T kS niτk+1
[(

k−1S ni
)T 0i V̄ k−1 + 0iV ni

t

]
, (47)

with
χk = −Pk

k

(
∆k

)−1(Pk
k

)T kS niτk+1 (48)

and
δk =

(
S k

)T + χk
(
k−1S ni

)T
. (49)

The process may be continued, allowing all terms associated with the dependent degrees of freedom to be expressed
in terms of the independent generalized speedsu1i

–upi
and their derivatives, namely

0i V̄ k = Γk 0i V̄ pi + Ξk 0iV ni
t , (50)

and
uk = −

(
∆k

)−1(Pk
k

)T kS niτk+1
[{(

k−1S ni
)T Γk

}
0i V̄ pi +

{(
k−1S ni

)T Ξk + U
}

0iV ni
t

]
, (51)

where
Γpi = U, and Γk+1 = δk+1Γk, (52)

and
Ξpi = 0, and Ξk+1 = δk+1Ξk + χk+1, (53)

Similarly, at the acceleration level we have

0īAk = Γk 0īApi + Ξk 0iAni
t , (54)

and
u̇k = −

(
∆k

)−1(Pk
k

)T kS niτk+1
[{(

k−1S ni
)T Γk

}
0īApi +

{(
k−1S ni

)T Ξk + U
}

0iAni
t

]
. (55)
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3.2 Local Closed Loop Kinetics

At this point sufficient kinematic quantities are available that one may start the process of assembling the equations of
motion associated with the constrained degrees of freedom within this loop.

It can be shown [Anderson, 1990], [Rosenthal, 1990], [Anderson, 1992], that due to the use of relative coordinates,
the equation of motion associated with degree of freedomp, which immediately precedes the lastm bodies of a tree
system may be written as

pi+mi∑
k=pi

(
Pk

pi

)T
(
IkĀk −Fk

)
= 0. (56)

In situations involving non-holonomic constraints, this equation becomes

pi+mi∑
k=pi

(
P̃k

pi

)T
(
IkĀk −Fk

)
= 0 (57)

whereP̃k
pi

is thenonholonomic spatial partial velocityof bodyk associated with independent generalized speedpi.
These nonholomonic partial velocities are those which result once the nonholonomic constraints have been used to
eliminate the dependent generalized speeds and their derivatives from all expressions. Making use of equation (5) and
the definitions forPk

pi
(4), 0iS k (43), and

0i V̄ k
(50) these nonholonomic spatial partial velocities are given by

P̃ k

pi
=

∂V̄k

∂upi

=
∂

∂upi

[(
0iS k

)T V̄0i + 0i V̄ k
]

=
∂

∂upi

[(
0iS k

)T V̄0i +
(
Γk 0i V̄ pi + Ξk 0iV ni

t

)]
= Γk P pi

pi
. (58)

Also, it is helpful to note that the accelerations̄Ak
appearing in equation (57) may be rewritten in terms ofĀ0i and

0īAk
. Specifically, for the situation where0i ≤ k < pi

Āk =
(
0iS k

)T Ā0i + 0īAk
. (59)

Substituting relations (54) into (59), with this result in turn substituted into equation (57) along with (58) yields

pi+mi∑
k=pi

(
P̃k

pi

)T
(
IkĀk −Fk

)
= 0

⇒
(
Ppi

pi

)T
pi+mi∑
k=pi

(
Γk

)T
(
IkĀk −Fk

)
= 0

⇒
(
Ppi

pi

)T
pi+mi∑
k=pi

(
Γk

)T
{
Ik

[(
0iS k

)T Ā0i + 0īAk
]
−Fk

}
= 0

⇒
(
Ppi

pi

)T
pi+mi∑
k=pi

(
Γk

)T
{
Ik

[(
0iS k

)T Ā0i +
(
Γk 0īApi + Ξk 0iAni

t

)]
−Fk

}
= 0

⇒
(
Ppi

pi

)T

{[ pi+mi∑
k=pi

(
Γk

)TIk
(
0iS k

)T
]
Ā0i +

[ p+mi∑
k=p

(
Γk

)TIkΓk
]
0īApi

13



+
[ pi+mi∑

k=pi

(
Γk

)TIkΞk
]
0iAni

t −
[ p+mi∑

k=p

(
Γk

)TFk
]}

= 0

⇒
(
Ppi

pi

)T
[
Îpi;0i Ā0i +

0iÎpi 0īApi − 0iF̂pi

]
= 0 (60)

What is left is effectively a newvirtual terminal bodypi, as indicated in figure (4), which is represented by multiple

inertia propertieŝIpi;0i
and

0iÎpi
, as well as applied forces

0iF̂pi
. Inspection of equations (43)–(49), (52)–(54), and

(57)–(60) indicate that the production of these quantities requires onlyO(mi) additional operations beyond those
required for the recursive determination of kinematic quantities of the associated unconstrained system. This is due
to the fact that the operations indicated by equations (43)–(60), are recursive in nature and as a rule consist of a
fixed number of multiplication and addition operations per body. Additionally, these virtual bodies have embedded
within them all the affects of themi constraints associated with closed loopi (i = 1, 2, . . . , nL) at both the velocity
and acceleration levels. Most importantly, these virtual bodies, and all of their associated properties may be treated
effectively as unconstrained bodies in the general unconstrainedO(n) state-space formulation.

Indeed, the termŝIpi;0i
,
0iÎpi

, and
0iF̂pi

may be recursively triagularized in much the same manner as the terms
in the standard state-spaceO(n) algorithms for unconstrained systems. Specifically, for0i < k ≤ pi(

Pk
k

)T
[
Îk;0iĀ0i +

0iÎk0īAk − 0iF̂ki

]
= 0, (61)

with the recursive relationships

Îk−1;0i = Ik−1
(
0iS k−1

)T + T k Îk;0i
, (62)

0iÎk−1
= Ik−1 + T k 0iÎk (

S k
)T
, (63)

0iF̂k−1
= Fk−1 + T k 0iF̂k

, (64)

whereT k is our triangularization operation matrix

T k =S k
[
U − 0iÎkPk

k

(
Mk

)−1(Pk
k

)T
]

(65)

and

Mk =
(
Pk

k

)T 0iÎk Pk
k. (66)

The process then continues recursively until body0i is reached, at which
0īA0i = 0 and the associated inertia term

is dropped. At this point̂Ik;0i
and

0iF̂k
become synonymous witĥIk

andF̂k
, respectively, fork = 0i. The procedure

then continues as an unconstrained system, making use of equations (14), (15), (19), (24), (26), and (27).
Once the base body is reached, the algorithm again works recursively outward, this time performing the recursive

forward substitution. For the situation where the bodyk being considered lies inboard of body0i, the recursive
relations are effectively those given by equations (26) and (27)

u̇k = M−1
k

(
Pk

k

)T
[
0iF̂k − Îk(

S k
)T ĀPr[k]

]
, (67)

and

Āk =
(
S k

)T ĀPr[k] + Pk
ku̇k, (68)

where

Ā0 = 0. (69)

For the situations where the bodyk lies between bodies0i andpi within a closed loopi (i.e. 0i < k ≤ pi ), these
forward substitution relations are modified to
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u̇k = M−1
k

(
Pk

k

)T
(

0iF̂k −
[
Îk;0iĀ0i +

0iÎk(
S k

)T 0īAPr[k]
])
, (70)

and

0īAk =
(
S k

)T 0īAPr[k] + Pk
ku̇k. (71)

The resulting Recursive Coordinate Reduction (RCR) procedure is fundamentally the same as the two kinematic
formulations appearing in Stajskal and Valášek [Stajskal and Vaĺašek, 1996]. However it has been formulated inde-
pendently within the frame work of Kane’s Equations and Anderson’sO(n) algorithm. And, as will be demonstrated,
it is more general.

4 Results

In this section, the equations of section 3 which describe a method for fully recursive coordinate reduction (RCR) is
demonstrated with a simple planar four-bar mechanism, a planar multi-loop redundant parallel five-bar mechanism,
as well as three variations of a heavily constrained spatial ladder mechanism. The RCR is shown to exhibit both
the expected solution for such mechanisms as well as superior constraint stability relative to the “TraditionalO(n)”
constraint technique.

4.1 Constraint Stability Comparison

Both the traditionalO(n) constraint formulation and the new method of recursive coordinate reduction have been
used to simulate a four-bar linkage. The result is the expected overlapping coordinate trajectories of figure 5, which
were obtained using a fourth order fixed step (0.01 seconds, no error check) Runge-Kutta integrator. However the
displacement error associated with the acceleration level constraint (AC) enforcement of the more traditionalO(n)
approach (if no additional form of constraint stabilization is used), is very different than that of the velocity level
constraint (VC) enforcement which is inherent in the presented RCR formulation, as shown in figure 6. One notes that
both systems are started with identical initial conditions (displacement and velocity) which are accurate to nine decimal
places, and the RCR method, which enforces the constraints to machine accuracy at the velocity level demonstrates
the expected result of a constant rate of drift in displacement at the ninth decimal place. By comparison, the traditional
approach, which enforces the constraints only that the acceleration level, drifts with an expected logarithmic trend
(∼quadratic in time), as was previously demonstrated by Park and Chiou [Park and Chiou, 1988].

The inclusion of superior constraint stability at no additional cost to the method is a significant improvement in
itself.

4.2 Parallel Manipulators

Although formulated for single independent (uncoupled) loops, the equations of section 3 can be applied exactly as
written to all forms of parallel manipulators. Parallel manipulators are structures which may be decomposed into
several linkages (legs) extending from a common base and terminating at a common end-effector.

Examples of the resulting topology of arbitrary parallel manipulators are shown in figure 7. These examples illus-
trate that the independent coordinates can all be assigned consecutively because all legs meet at the single end-effector
which is initially located through the traversal of a series of independent coordinates. Any remaining independent
degrees of freedom are then selected as the coordinates adjacent to the end effector, and the effects of the dependent
coordinates are placed on the loops’ local virtual terminal bodiespi.

The planar redundant parallel five-bar manipulator of figure 7 has been implemented with the Recursive Coordinate
Reduction method. Figure 8 shows the trajectories of the independent coordinates compared with the results of an
independent multibody package (AUTOLEV).

At this time it is important to separate the RCR method from theO(n) formulation of Saha and Schiehlen
[Saha and Schiehlen, 2001] which applies strictly to nonredundant parallel (legged) manipulators. Saha and Schiehlen’s
formulation requires that a single independent coordinate be placed in each leg, thus the broader class of redundant
and under-actuated parallel manipulators mentioned here are outside of the scope of the work. However, the extension
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Figure 9: Schematic of Heavily Constrained System

to such systemsmaybe possible, but the resulting formulation would be as fundamentally different in structure as the
selection of independent coordinates.

4.3 Other Heavily Constrained Systems

Application of recursive coordinate reduction to heavily constrained systems is demonstrated through simulation of
thespatial laddersystems shown in figure (9). In these systems, the bodies are connected to ground by two degree of
freedom Hooke’s joints and interconnected in a ladder type formation by single degree of freedom revolute joints. An
arbitrary example of such a system consisting ofL coupled closed loops will involve;N = 2L+1 bodies;L phantom
bodies;n = 2N = 4L+2 generalized coordinates;m = 4L algebraic constraints; yet only have2 degrees of freedom.
This system represents a situation where previously developed dynamic simulation and analysis algorithms are likely
to pay a high computational price both for the number of generalized coordinatesn and the number of algebraic
constraintsm.

Direct application of the previous equations to the ladder systems will actually result in a quadratic growth in the
number of computations. This is due to the fact that each phantom body’s (ni’s) kinematic loop quantities must be
related and computed back to bodypi, which requires a linearly increasing effort for each additional cell (or ladder
rung).

To avoid quadratic growth and maintain a linear formulation we note that for loops sharing a common base body
(e.g.0i = 0j), the following relationships hold at the connection to the first body in a new cell:

0jĀkj = δkj 0jĀPr[kj ] + χkj
0jAnj

t (72)

= δkj 0īAki + χkj
0jAnj

t (73)

and,
0īAki = Γki 0īApi + Ξki 0iAni

t . (74)

So we may write
0jĀkj = δkj (Γki 0īApi + Ξki 0iAni

t ) + χkj
0jAnj

t , (75)

or

0jĀkj = Γkj 0īApi + Θkj + χkj
0jAnj

t (76)

= Γkj 0īApj + Θkj + χkj
0jAnj

t , (77)

and for a general bodykj we have
0jĀkj = Γkj 0īApj + Θkj + Ξkj 0jAnj

t , (78)
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where the definition ofΓ is unchanged andΞ follows its original recursion of (53) but is exactlyχ on the first body in
a new cell.

TheΘ term is a known constant which may be propagated forward throughout the coupled closed loops. On the
base bodyΘ0i = 0 and the recursion is given by

Θki = δki ΘPr[ki], (79)

except for anyfirst body which begins a new loopj which is instead given by,

Θkj = δkj (ΘPr[kj ] + ΞPr[kj ] 0jAni
t ). (80)

The additionalΘ term required for trueO(n+m) performance becomes part of the known and applied force term
0iF̂ni

in exactly the same manner as the
0iAni

t terms.
Through appropriate selection of inertia properties, all ladder systems given by figure 9 can be made to exhibit

the same independent coordinate trajectories (q1 andq2). Figure 10 shows the independent coordinate trajectories of
several such mechanisms (a cell being an independent closed loop) using recursive coordinate reduction (RCR) as well
as the solution of an equivalent two degree of freedom spatial pendulum obtained with AUTOLEV.
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Figure 10: Independent Coordinate Trajectories of Various Ladder Mechanisms

Figure 11 indicates the performance characteristics for analysis of such a heavily constrained problems:i) If the
system constraints are not considered;ii) The system constraints are considered, but the traditionalO(n) constraint
approach is used; And,iii) the Recursive Coordinate Reduction algorithm presented here is used. Figure 11 indicates
that in situations, such as this, where the number of constraintsm is of the same order as the number of generalized
coordinatesn, then even these so-called “Order-n” algorithms actually offerO(n3) performance, and generally may
not perform even as well as well writtenO(n3)-based algorithms. However, the presented recursive coordinate reduc-
tion algorithm does not pay such a price, being linear in both the number of generalized coordinatesn and the number
of algebraic constraintsm (e.g.O(n+m)).
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4.4 Restrictions

Application of the method of recursive coordinate reduction has been shown to produce valid results for a significant
class of problems. However, no discussion is included for systems of coupled loops which do not share a common
base body.

The careful observer will also note that multibody systems can be constructed such that the firstni−mi joint coor-
dinates in a given loop do not constitute a valid selection of independent coordinates. Moreover, some systems posses
singular configurations, with respect to specific independent coordinate selections at andnearwhich a previously valid
coordinate selection is invalid or ill conditioned.

These issues are to be addressed in a forthcoming publication.

5 Conclusions

A new method for fully recursive treatment of constraints has been presented in the form of the Recursive Coordinate
Reduction algorithm. Relative to the commonO(n) constraint method the RCR algorithm exhibits both superior
numerical stability of the constraint relations (with respect to temporal integration), and a significant reduction in
computational order fromO(n + mn + m2n + m3) to O(n + m). The method has demonstrated applicability to
a large family of closed loop multibody systems, and the extension to the complete set is the topic of a forthcoming
publication.
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