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Abstract

This paper presents an algorithm for the efficient numerical analysis and simulation of modest to heavily constrained
multi-rigid-body dynamic systems. The algorithm can accommodate the spatial motion of general multi-rigid-body
systems containing arbitrarily many closed loop&ifn+m) operations overall for systems containingeneralized
coordinates, anéh independent algebraic constraints. The presented approach does not suffer from the performance
(speed) penalty encountered by most other of the so-calldeh)” state-space formulations, when dealing with
constraints which tend to actually sh&\n + m + nm + nm? + m?®) performance. Additionally, these latter for-
mulations may require additional constraint violation stabilization procedures (e.g. Baumgarte’s method, coordinate
partitioning, etc.) which can contribute significant additional computation. The presented method suffers less from
this difficulty because the loop closure constraints at both the velocity and acceleration level are directly embedded
within the formulation. Due to these characteristics, the presented algorithm offers superior computing performance
relative to other methods in situations involving both langandm.

Nomenclature

a®  Matrix representation of acceleration of center of miass the Newtonian reference frame.
a¥  Acceleration remainder term associated with bédp N; This is all terms ofe* which are not explicit in

u's.

A*  The generalized acceleration matrix of boein N.

Ak That portion of the generalized acceleration matrix of bédy N which is explicit in the unknown state
derivativest.

A,’f That portion of the generalized acceleration matrix of bbdly V which is not explicit in the unknown state
derivativest.

O'A’“ The generalized acceleration matrixgfin reference framé;, which are associated with closed loop

Ojjk That portion of the generalized acceleration matrixih 0; which is explicit in the unknown state deriva-
tivesi.

O’Af That portion of the generalized acceleration matrixcpin 0; which is not explicit in the unknown state
derivativesu.

C  Invertible transformation matrix relatingto u.

C* Direction cosine matrix relating the basis vectors fixed in bbdy those in proximal bodyr[k].
Dist[k] Distal body set associated with bo#ly

D Matrix used in relating to u, and commonly associated with prescribed motions.

E, Expansion matrix which converis; constraint load measure numbers to constraint load MArix
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F* Recursive generalized force matrix for bokly
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F  Atticulated Body Force associated with bokly

i~k . . .
0 JF  Articulated Body Force associated with boldyor 0; < k; < p;.

[, Matrix representation of constraint force used do cleieclosed loop.
F. Constraint load matrix-th closed loop.

o
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I*/*¥" Central inertia matrix of body.
7ZF  Generalized inertia matrix of body.

/ Articulated Body Inertianatrix of bodyk, associated with acceleratiojlk.

Articulated Body Inertiamatrix of bodyk, associated with accelerati(%ﬁk.

Articulated Body Inertiamatrix of bodyk, associated with accelerati@oi.
Index representing an arbitrary system badyglobal numbering).
Index representing an arbitrary bo&dwvithin closed loop (local loop numbering).
Center of mass of body.
Right-Hand-Side of system equations of motion, representing applied forces, as well as centripetal and Cori-
olis portions of inertia forces.
m  Total number of independent system constraints.
m;  Total number of constraints associated with closed loop
M  System Mass Matrix.
M, Matrix of terms associated with generalized spegdvhich would be found on the diagonal of a partially
triangularized (decomposed) system mass matrix.
n  Total number of system generalized coordinates.
n;  Total number of generalized coordinates associatedastticlosed loop constraint equations.
ny,  Total number of closed loops.
N Newtonian reference frame.
0; Base body (primary reference frame) of closed loop
p;  Body containing the highest independent degree-of-freedom (local loop numbering) within closéd loop
Pk Partial Velocity matrix for body: associated with generalized speeds

Nonholonomic Partial Velocity matrix for body associated with independent generalized spegds
Pr[k] Proximal (parent) body set associated with bédy
Then x 1 matrix of generalized coordinates used to describe the configuration of the system.
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G  The first time derivative of the system generalized coordinates.
R Matrix representation of resultant of all non-constraint forces acting on body
S* Basis consisterhift Matrixwhich converts system of forces acting through mass centet@equivalent

system acting through point éfinstantaneously coincident with the mass center of it proximal de¥].
3S*  shiftmatrix which transforms a force system acting through mass centetcodn equivalent system acting
through point ofk, instantaneously coincident with the mass center of ody
t  Time.
t.  Matrix representation of constraint torque used do cledeclosed loop.
T"  Matrix representation of all moments acting on bddy
7%  Localtriangularization matrixassociated with body.

Constraint loadriangularization Matrixassociated with body and closed loop.

u  The systengeneralized speedshich characterize the motion of the system.

u;,  System generalized speeds which are directly associated with the motion df beldive to its parent body.

4  Systemgeneralized acceleratiorts be determined and temporally integrated.

1,  System generalized accelerations which are directly associated with the motion éf imaljve to its parent
body.

U  Appropriately dimensioned identity matrix.

v*" Velocity of the center of mass of bodyin reference framev.

vk Partial velocity of the center of mass of boklyn reference frameéV associated with,..

vk Velocity Remainder Termssociated with the center of mass of badnp reference framev.

V¥ The generalized velocity matrix, which relates the velocity of bbdy reference framév.



Qk Portion of the bodyt generalized velocity matrix which is explicit in the generalized speeds
yf Body k generalized velocity remainder term matrix, which relates the velocity of kddyreference frame

N.
%k The generalized velocity matrix, which relates the velocity;afmass center to that of loop base bagy

Oiﬂk Portion of the generalized velocity matfiky ¥, which is explicit in the generalized speeds
Oiyt"' That portion of the generalized velocity mat(r)i‘iy’“, which is not explicit in the generalized speeds
a®  Angular acceleration of body in Newtonian reference fram.
aF  Angular acceleration remainder terna$ body k; This represents all terms of° which are not explicit in
u's.
&’ Useful intermediate quantity associated with recursive treatment of dependent generalized speeds and asso-

ciated state derivatives of the closed loop under consideration.
A*i Useful intermediate quantity associated with recursive treatment of Boofythe closed loop under consid-

eration.
+*  Position vector from body’r k] mass center to body mass center.
I'*  Useful intermediate quantity associated with recursive treatment of dependent degrees of freedoniof body

within the closed loop under consideration.
¢®  Coefficient matrix to unknown constraint load measure numbgassociated with loopwithin expression

' for constrained system generalized acceleration.
Intermediate quantity useful in the recursive determinatiogfof
Portion of Constrained system generalized accelerationbich is not explicit in constraint load measure

numbers\.
Intermediate quantity useful in the recursive determinatiolﬂ“of

=k
n
©F  Intermediate quantity appearing in the solution for coupled loop systems.
A
h
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Lagrange multipliers.
Useful intermediate quantity associated with recursive treatment of boafithe closed loop under consid-

eration.
Useful intermediate quantity associated with recursive treatment of dependent degrees of freedonkof body

within the closed loop under consideration.
®  Set ofm system algebraic constraint equations.
® , System constraint Jacobian.
p+i  Useful intermediate quantity associated with recursive treatment of dependent generalized speeds and asso-
B ciated state derivatives+ j of the closed loop under consideration.
¥ Portion of velocity level constraint equations which is not explicit in generalized speedsis term is

usually associated with specified motions.
1 Portion of acceleration level constraint equations which is not explicit in generalized speeds time derivatives
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—
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u.
w®  Angular velocity of bodyk in reference framev.
w”  Partial angular velocity of bod in reference frameéV associated with,..
wF  Angular velocity Remainder Terassociated with body in reference framev.
w®  Matrix equivalent to vector cross-produef x .

1 Introduction

Computational efficiency of multibody system simulations has been receiving increasing attention since the first
O(n) (computational effort per temporal integration step increases as linear function of the number of general-
ized coordinates) algorithm developed by Vereshchagin in 1975 [Vereshchagin, 1975]. This work marked a sig-
nificant departure in potential algorithm computational cost from that possible with more traditional formulations,
which tended to offerO(n?) (the number of computational operations required for each temporal integration



step increases as a cubic functionrgf Since that ground-breaking work, a myriad of formulations and algo-
rithms have been put forward by individuals whose interests lay in a wide variety of fields [Hollerbach, 1980],
[Walker and Orin, 1982], [Featherstone, 1983], [Nielan, 1986], [Bae and Haug 1, 1987], [Bae and Haug 2, 1987],
[Anderson, 1990], [Rosenthal, 1990], [Schwertassek, 1993], [Banerjee, 1993], [Baraff, 1996], and others. Much of
this has been done in an effort to develop more efficient, yet general simulation algorithms for multibody systems. In
many of these situations, computational efficiency, which manifests itself in the form of computational speed, was of
primary importance.

To this end, researchers have tried to improve the overall computational efficiency through vastly dif-
ferent approaches. Some researchers have pursued improved simulation speed through the use of dif-
ferent dynamic analysis methods for multibody systems, such as the methods based on Newton-Euler
equations [Armstrong, 1979], [Walker and Orin, 1982], Lagrangian equations [Hollerbach, 1980], Kane’'s equa-
tions [Anderson, 1990], [Rosenthal, 1990] [Banerjee, 1993], and variational methods [Bae and Haug 1, 1987],
[Bae and Haug 2, 1987]. Others have pursued improved simulation speed through developing new more efficient un-
derlying algorithms for the forward dynamics problem, suctas?), O(n?) [Walker and Orin, 1982], [Nielan, 1986]
and O(n) algorithms [Armstrong, 1979], [Featherstone, 1983], [Featherstone, 1987], [Bae and Haug 1, 1987], and
[Baraff, 1996]. While still other researchers have directed their attention to more efficient implementation of mathe-
matical operations within existing formulations. Whichever avenue is pursued, the dynamical equations of motions
are most generally be expressed in the form

U= Q(g» t) : g + Q(g)a (1(1)
M(g,t;p) -+ @7y (g,t:p) - A = K(g,4, 1 p), (10)
@(q,t;p) = 0. (1c)

In each of these sets of equatiansepresents the set af system generalized coordinates, with associated first time
derivativesj. The matrixC appearing in equation (1a) is a user specified invertible matrix which maps thimtethe
generalized speeds [Kane and Levinson, 1985}hich are velocity level quasi-coordinates which can facilitate the
characterization of the motion of the system. By comparison, matiixequation (1a) is that portion of the definition

of u which results from specified/prescribed motions which appear within the system. The Matsitermed the
system ‘mass matrix’ (though the system need not be purely mechanical in nature) /vlsle column matrix
containing contributions of all forcing terms, body loads, as well as centripetal and Coriolis acceleration inertia load
contributions. The quantit® _ is the constraint Jacobian associated with the partial derivative oftinelependent
algebraic constraint equations represented by (1c) with respect to

In Equations (1) the state variables may be redundant, often representing position, orientation, temperature, pres-
sure, voltage, etc. and their respective derivatives. If a redundancy exists, then generalized constraini\“fousts”
be applied to the system equations of motion (1b) to enforce the algebraic constraint equations (1c).

When traditional state-space dynamic analysis formulations are employed a computational2ost)ofs in-
evitable to producé/ explicitly, if special methods are not used. If simple recursive relationships are observed, then
the cost of generating/ can be reduced t@(n?) [Nielan, 1986], [Rosenthal and Sherman, 1986]. However, an ad-
ditional O(n?) cost is incurred for the mass matrix decomposition required in solving equation (1b) for the unknown
state derivativeg by direct methods. This expense may be acceptable for a system involving small to mduolgtst
anO(n?) increase in computational cost can become prohibitively expensive for even a modest increas®mef
tunately, this prohibitive operational order can be greatly reduced through the intelligent use of efficient (often lower
computational order) dynamic formulations.

2 Standard Recursive “O(n)” Analysis for Constrained Systems

When analyzing closed loop systems (systems containing kinematic loops) with most staté{spafmemulations,

the closed loop system is first converted to an open tree system. This is accomplished by cutting the closed loops
at specified joints, as indicated in figure (1). At this time a unique path exits from each body to every other body
in the system. To insure that the new tree system still behaves as the original closed loop system, explicit equal and



opposite constraint forces are added to each side of the cut joints, and the equations of motions are augmented by
the companion set of algebraic constraint equations (1c) which must now be satisfied.

(A) General Multibody System

(B) Associated Open Loop System

Figure 1: General Closed Loop System Schematic and Associated Tree System

2.1 Mathematical Preliminaries

To aid in the subsequent development, consider the notation associated with the description of an arbitrary set of
interconnected rigid bodies shown in figure (2). For this system, proximal (parent)Bddy is connected to its
child bodyk through joint%, via joint pointsk~ andk™ which reside in bodie®r k] andk, respectively. Similarly,
the distal (child) bodies of bodyt are given as members of the set of bodi&ist[k]. The position vectos* locates
joint-% relative to the mass center of body[k], while the position vector* locates the mass center of boklyvith
respect to the outboard end of this same joint. It will also prove convenient to describe the position of child mass
centerk* relative to proximal mass centérr[k]* by the vectory*.
The angular velocity of any bodywith respect to the Newtonian reference fraMgand velocity of its associated
mass centet* may always be written in terms of the generalized speeds as

n
wh = Zw’fur + wf 2
r=1
and .
vF :va*uTJrvf*. 3
r=1
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Dist[k]~

Joint k

Figure 2: Notation Associated with an Arbitrary Set of Interconnected Rigid Bodies

In these expressions® andv*™ are termed the'” partial angular velocity of body: and " partial velocity of

point £*, in IV, respectively. These quantities may be thought of as basis vectors for the space of admissible system

velocities and angular velocities, while the associated generalized speeds are the velocity space measure numbers.

Additionally, the termsv* andv¥" appearing in equations (2)—(3), are referred to asatigular velocity remainder

termof body k£ andvelocity remainder termof pointk*, in IV, respectively. These quantities are most often associated

with specified/prescribed motion, and thus are not associated with the time derivative of a system degree of freedom.
When deriving this method it is often convenient to express quantities in a scalar matrix, as opposed to a tensor

(vector and dyadic) form. For this purpose an arbitrary vegtowill be represented in matrix form a&’, which is

associated with the local dextral orthogonal unit vectarsks, ks, fixed in bodyk. One may then define thelocity,

partial velocity, andvelocity remainder terrmatrices as

k k

e S - b S b @

With these matrices so defined, equations (2) and (3) may be expressed as
VE=V" 4 v =" Phu, 4+ V) (5)
r=1

One can similarly represent the generalized acceleration matrix of an arbitrarytasigefined in previous works
[Anderson, 1990], [Anderson, 1992], as
N
i

where A¥ may also be divided into two portions. Onejsk, which contains all terms which are explicit in the
unknown state derivatives and the other is thacceleration remainder termil,’f, which represents all of the other
acceleration terms (and may be calculated directly from the system state), giving

219

g } , ©)

A= A AL ()

2.2 Recursive Kinematic Relationships

With the generalized velocity, generalized acceleration, and generalized acceleration remainder term matrices so repre-
sented, it is possible to compactly represent the recursive relationships necessary for determining all system kinematic
guantities. As has been demonstrated in [Anderson, 1990] and [Anderson, 1992] we have

V=[5V ]+ v, ®)



and

AR = [sM)TAT 4 PRy ] + AF. ©)
The quantityS * appearing in equations (8)—(9) is the basis consistent linear transformation matrix
C k C k’)/ k
Sh=1= = x 10
S l 0 ¥ ] (10)
6X6

Within this expressionﬁ’C = Prliklek s the direction cosine matrix which relates the badpasis vectors to those
fixed in its parent bodyPr[k]; 0 is a3 x 3 zero matrix; and_y’xf is the skew symmetric matrix equivalent to the vector

cross product operatiop® x. The shift matrix transformatiorS * converts a system of forces and moments acting
through the center of mass &f to an equivalent force system, acting though a point afhich is instantaneously
coincident with the center of mass Bf-[k].

At this time, it is also convenient to define the bdegeneralized inertiaZ * and the body: generalized forcg *

matrices
k/k*
T+ = ll 9 ] , (11)
- 6X6

Fk (12)

Within these expressioni_ﬁ’f/"’* is the3 x 3 central inertia matrix of bodj, andM* is the diagonal translational mass
matrix of this same body. By comparis@ii andR* represent the resultant force system of all moments and forces,
respectively, acting on bodythrough its center of mass'.

2.3 Triangularization of Equations & Standard “O(n)” Treatment of Constraints

In most state space ordermethods the reduction in the computational order of the overall cost of determining values
for the unknown state derivativesis largely accomplished by avoiding the formulation of the coupled set of equa-
tions of motion. The approach further reduces computational burden because it eliminates the need to subsequently
decompose and solve these equations for their unknown state derivatives.

Avoiding the formulation of the explicit coupled system of equations is to a significant part accomplished through
the segregation of accelerations into #trownstate dependent porticu_tt,’f€ and that portion which is explicit (and
linear) in the unknown state derivative;&'f. In this manner, unknown state derivativesan be isolated and manipu-
lated (triagularized) as the equations are being formed. This allows the equations of motion to be produced in what is
implicitly equivalent to a lower triangular form, where only the diagonal elements of the system triangularized mass
matrix are explicitly calculated.

In a similar manner, the explicit constraint forcEs associated with the cut joints which arise in thé) treat-
ment of closed loop systems, are recursively treated [Featherstone, 1987] [Bae and Haug 2, 1987], [Anderson, 1990],
[Anderson, 1992], [Jain and Rodrequez, 1995] and others. In these works, the closed loops are cut to produce an asso-
ciated tree system. The explicit constraint forces, which manifest themselxaa exquation (1b), are then imposed
to insure that the algebraic constraints (loop closure constraints) (1b), are satisfied.

Just as with the accelerations discussed above, the goal here is to segregate the appli&d fordé¥’, in (12),
from the constraint forceB,.. The applied forceg™* and R, are directly determinable from the force element model
and current system state values. By comparison, the constraint feiy@e unknown, being linear in the unknown
constraint force measure numbers

The segregation of constraint forces into dependent and independent portions can be accomplished by decomposing
the unknown state derivativeésas

w=mn+¢A (13)

The quantityp appearing within (13), is that portion @fwhich is independent of the constraint force measure numbers
A, and is exactly the value obtained fioif the constraints (1c) are not enforced. Thus, the quagtkynay be thought
of as a correction term to the unconstrained state derivatives.



The constraint forces have no influence on the kinematic calculations, so they only need be considered during and
after the recursive triangularization portion of ttén) routines. The kinematic portion of the routine consists of
the kinematic calculations working recursively outward from the system base body (system body without a parent) to
the system terminal bodies (system bodies without children). Once the terminal bodies are reached, the topological
direction with which the calculations proceed reverses, and the routine works recursively inward, from the terminal
bodies to the base-body, forming generalized inertia forces, generalized applied forces, generalized constraint forces,
and triangularizing the equations as they are formed.

Key quantities which aid in representation of the triangularization process arartibalated body inertisand

. =k ~k . . o . .
articulated body forceZ ~ and.F , respectively [Featherstone, 1983]; the local triangularization mattixthe tri-
~ k
angularization matriZ_ ; the triangularized mass matrix diagonal elemeltg; and the triangularized constraints

. . .. ~k
associated with théth cut joint (closed loop) ...
Each of these quantities can be easily determined using the inward (from child to parent) recursive relationships

A AR D Al CE) (14)
JEDist[k]

Fr-rry Y TF (15)

jeDist[k]
VR (16)
fi = if (EZ‘AZ‘)’ (17)

with

Th=s*u -2 Phmt (BY)"], (18)

and ok
M, = (Ph) I Pk. (19)

WhereU appearing in (18) is 8 x 6 identity matrix, and the quantity, appearing in (17) is & x m; expansion
matrix which converts then; unknown constraint load measure numbers\jnassociated with thé-th cut joint
(i = 1,2,...,nz), to the associated constraint forcg; and momentg . . Specifically, £, provides the linear

transformation such that
t

Fe = [ }‘

¢y

— B\, (20)

—1—1

It can be shown [Anderson, 1990], [Rosenthal, 1990], and [Anderson, 1992] that withttiaesgilarizedquan-
tities so defined, the equation of motion directly associated with the generalizedispesal be given as

(8|2 -2 + > Cr) + > TiEN] =0 (21)
=1 1=1
where
ﬁk _ (Qk)TﬁPr[k] + Blz;ﬂkv (22)
and ~k T =Pr(k
&=@HM Pt =1 ), (23)



2.4 Forward Substitution & Standard “O(n)” Treatment of Constraints

The triangularization procedure works recursively inward from terminal bodies, towards the system base body (that
body of the system which connects the system to the inertial reference frame) producing a system of equations which
are implicitly equal to the triangularized equations. Once the system base body is reached, equations (20)-(23) give
that

1

= MNP E, (24)
and

¢ = MR TLE, (25)

All information associated with the right hand sides of equations (24) and (25) is known. Thus the process may
now reverse its direction with respect to the system topology, and recursively perform a forward substitution for the
determination oﬁ’*’ and¢ f This forward substitution process is accomplished through the recursive use of

~k ~k
0t = M (PR [E -2 (sH) T (27)
and ~k T =Pr[k]
G =GR (28)
¢ = a2 [LE - 276 (29)

2.5 Standard “O(n)” Treatment of Constraints

Unfortunately, determining (nx1) and¢ (nxm) through use of equations (24)—(29), equation (13) still leavesithe
unknownsa (,,,.,) to be determined. Thus one must make use oftredditional constraint equations

(@ Ju=¥ (30)

—

which are obtained through the differentiation of equation (1c) with respect to time. Differentiating this expression
once more with respect to time yields

(Q ,g)g = y (31)
Substituting the expression far from equation (13), into this expression produces

2, cr={v-2,n} (32)

which one may solve to obtain the constraint load measure numb@isese values fok are in turn substituted back
into expression (13), yielding the numerical valuesdor

2.6 Difficulties with the Standard “O(n)” Treatment of Constraints

If one now looks more closely at the steps involved with the determination of the specific quantiti@nd, which
are used in determining the unknown state derivativéscan be seen that: The determinationofequiresO(n)
operationsg requiresO(nm) operations; and requiresO(nm + nm? + m?) operations. As a result, the overall
cost associated with the determinationiofith thesestandardso called ‘O(n)” approaches is actuall§ (n -+ nm +
nm? +m?).

It should be noted that this cost does not consider the added computation, which may be necessary, for some sys-
tems, to stabilize constraint violation error growth. Methods which may be considered in this regeediargarte’s
method[Baumgarte, 1972]Coordinate Partitioning|Wehage and Haug, 1982], [Wehage, 1988], or other forms of
constraint error stabilization [Park and Chiou, 1988], [Anderson, 1990], [Anderson, 1992], each of which can be
shown to contribute an addition@(nm? + m?) operations to the overall computational cost.



Thus it is apparent that these so-called(#)” approaches for closed loop systems may perform very well in
situations where both > 1 andn > m. However, ifn andm are comparable in size (i.en is O(n)), then
these ‘O(n)” state space methods actually yigldn?) performance, and will often be out performed by other more
traditional O (n?®) methods.

Difficulties which arise in the application of the standard state spéde)” approach to moderatelyr{ ~ n)
constrained, or heavilyn{ > n) constrained systems have several sources. First, using this more stérdard
approach, then; unknown constraint load measure numbgrsnanifesting themselves if., (i = 1,...,nz) are
each individually passed (operated on) by eaokestral bodyi.e. every body which is in the topological path
between the application point of the constraint load and the system base body). This resultgimarexpense for
calculating these constraint force related terms within the equations of motion (13). It would be desirable to reduce, if
not eliminate the need to operate on all constraint load unknowns by so many of the system bodies.

Second, the generation of the system level constraint Jac@bjanequires potentially)(nm) operations. Worse
still, the matrix manipulations, and decomposition and solve operations associated with the determination of
equations (31) and (32) requir€$nm +nm? +m?) operations. Again, it would be desirable to eliminate the explicit
formulation of equations (31) and (32), and subsequent solutiok. for

Third, as indicated above, a method such as coordinate partitioning, for reducing constraint violation error is
required with an additional computational burderCdfam + nm? + m?). This cost can be significantly reduced by
effectively applying the method in a more efficient manner, recursively employing it in the original generation of the
constrained equations of motion.

3 Fully Recursive Coordinate Reduction for Closed Loop Systems

The primary computational efficiency gains associated with the@ewt m) method presented in this paper, relative

to otherO(n) closed loop approaches [Featherstone, 1987], [Bae and Haug 2, 1987], [Anderson, 1990], [Anderson, 1992],
[Anderson, 1993], [Banerjee, 1993], are realized through the local and kinematic manner in which the loops are
treated. To aid in this development, consider the generic closedil¢op= 1,...,nz), shown in figure 3. This

loop development involves many symbols and expressions which are extremely similar in form and meaning to those
which are associated with the global treatment (description) of the system. For this reason, all quantities which are
specifically associated with the treatment of closed loops in this development will be denoted by a stifscript

represents body-of the system, whilé:; represents the body-of the close loog under consideration).

Generic Loop Pi-

Figure 3: Local Numbering Scheme of Generic Loop
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3.1 Local Closed Loop Kinematics

The process begins by selecting the body which branches to forirttheosed loop to act as the loop sub-system’s
primary reference frame. This body is locally referred to addbp base bodgnd is given the local body numbey.
The bodies of the loop are then locally numbered consecutively, up through local body numbéneren; is the
number of bodies which form thieth closed loop and the last body is a massless copy (@hantom of the loop
base body. Figure 4 illustrates the tree representation of the generic loop of figure 3.

Generic Loop Pi- 1

Virtual Terminal
Body

Loop i

Dependent

N"X\_P/hantom Body
(copy of 0i)

Figure 4: Tree Representation of the Generic Loop (Figure 3) Using a Phantom Body

Within the closed loop the recursive velocity and acceleration relationships, (8) and (9) still apply. At the terminal
end of the loop, the phantom body must then have zero velocity and acceleration relative to the reference frame
(body)0;. Thus, from equation (8) we have

Olznl _ (in)T OiEmfl “r‘BZ:Um +Oi£tﬂ1‘, =0. (33)

Pre-multiplying (33) through b’ and then solving for the dependent generalized spegdsgields

o= =[] {@nrfenr et ]| -

Similarly, from equations (9) and (32), we have at the acceleration level

-1 iA T — i .
i, == [Ezmen] @t e a ] (@)
Appropriately substituting (34) into (33) produces

R (36)

with
A" = (PP 37)

and
= U =P (AM) T (BT (38)
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Continuing the process, we have
L L P 4] B (39)

Premultiplying this bxzﬁ‘gf_ﬁ)TQ”i, then solving the resulting equation fay. , yields

o = —(A7 ) T R TS [T )T ], 0
where
AM = (P TS T ) TP A “1)

Substituting (40) back into (39) yields

{zni B Im(ém')TEniil (Am_1>_1( n;—1 )Tﬁmlni} [@m)T@ni—l>T 01‘21’“*2 + OLZtm:| — Q (42)

ni—l —_— —’I’Li—l

Defining the following recursive relationships for intermediate quantities

it g o ok — {szrl -~ Ik+1(kéni)Tzlie(ék)—l(zlz)Tkémszrl} (44)
ék _ (Ez)TkﬁimI]H_l(kém)T EIZ (45)
we write the recursive relationships
Tpt =gt T (46)
and 1 T T _
= —(ékf (Ei) kg mi pht1 [(kqéni) Oizkfl n Oikg“ ’ 7
with .
X' =-P (ék)il(ﬂi) hg i pktt (48)
and . i
ék — (Qk) +Xk (k—lﬁ’ni) ) (49)

The process may be continued, allowing all terms associated with the dependent degrees of freedom to be expressed
in terms of the independent generalized spegdsu,, and their derivatives, namely

Oizk _ Ek Oz‘EPi + =k Oiktma (50)
and . . . ) .
w, = —(ék)_ (212) kg ni ket [{ (k—lﬁn,) Ek}Oz:Xpi 4 {(k—lén,;) =k +Q}0i£tni:|a (51)
where
[ =U, and DM =g"tTk (52)
and
EP =0, and E"=g"EN MY (53)

Similarly, at the acceleration level we have

At =1t A4 2Ry (54)

and

G, = —(ék)_l(ﬂlf’c)T kg mi kil [{ (k—lﬁm)T Ek}ogpi i {(k—léni)T = +Q}0j_4?ii|. (55)
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3.2 Local Closed Loop Kinetics

At this point sufficient kinematic quantities are available that one may start the process of assembling the equations of
motion associated with the constrained degrees of freedom within this loop.

It can be shown [Anderson, 1990], [Rosenthal, 1990], [Anderson, 1992], that due to the use of relative coordinates,
the equation of motion associated with degree of freegomhich immediately precedes the lastbodies of a tree

system may be written as
pitm;

> () (zFA - ) ~o (56)

k=p;

In situations involving non-holonomic constraints, this equation becomes

Pitm;

> (B, (T A - F) =0 (57)

k=p;

wherePk is thenonholonomic spatial partial velocityf body k associated with independent generalized spged
These nonholomonlc partial velocities are those which result once the honholonomic constraints have been used to
eliminate the dependent generalized speeds and their derivatives from all expressions. Making use of equation (5) and

the definitions f0r7_3’;)i (4),%S* (43), ando’ﬂk (50) these nonholonomic spatial partial velocities are given by

ﬁk:az

—Pi 8’(,6[,1

_ |:(Oi§k:)T£0i +Oi£k

= " pr (58)

= —Dpi’

Also, it is helpful to note that the acceleratioﬂ§ appearing in equation (57) may be rewritten in termsjtg‘f and
Oﬂk. Specifically, for the situation whefg < k < p;

A= (s A" + A" (59)
Substituting relations (54) into (59), with this result in turn substituted into equation (57) along with (58) yields

pitm;
> ()" (A" - £) =0
k=p;
pitm; - "
= @) Y @) (A - ) =0
k=pi
pit+m; o oo ok
= @)y @) {zesy a1 - £ -
k=p;
pit+m;
= () Y (F’“)T{I’“R“isk)TAOw(rk A= o)) - fk}—o
k=p;
[Z))i"!‘mi p+m;
- e {[E sy e [X ey
k=p; k=p
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pitm; p+m,
k=p; k=p
_ (731)1) |:Ap“0l A% szpfz Ogqpe _ Oiﬁpi] —0 (60)

What is leftis effectively a newirtual terminal bodyp;, as indicated in figure (4), which is represented by multiple

inertia propertlegp“m and I , as well as applied forceoéfpi. Inspection of equations (43)—(49), (52)—(54), and
(57)—(60) indicate that the production of these quantities requires @fly;) additional operations beyond those
required for the recursive determination of kinematic quantities of the associated unconstrained system. This is due
to the fact that the operations indicated by equations (43)—(60), are recursive in nature and as a rule consist of a
fixed number of multiplication and addition operations per body. Additionally, these virtual bodies have embedded
within them all the affects of the:; constraints associated with closed laop = 1,2, ...,ny) at both the velocity

and acceleration levels. Most importantly, these virtual bodies, and all of their associated properties may be treated

effectively as unconstrained bodies in the general unconstréietlstate-space formulation.

i30; 0i5pi 0; ~pi . . . .
Indeed, the termﬁp Zp , and Zp may be recursively triagularized in much the same manner as the terms

in the standard state- spa@én) algorithms for unconstrained systems. SpecificallyQfot k& < p;

(RY)" |2 A + 0 -V o, (61)
with the recursive relationships
Zk—l%oz = Tl (0g ke 1) L TF Zk;oi’ (62)
szk— — k1 Th Oi- (ék)T7 (63)
01‘7:_1@71 _ gkl gk oi]_:_k, (64)
whereT™* is our triangularization operation matrix
T =st[u-"2"Ph (M) " ()] (65)
and
M, = (P%)" 1" Pt (66)

The process then continues recursively until bogdis reached, at WhicPﬂ_éTO" = 0 and the associated inertia term

is dropped. At this point”"" and” " become synonymous with' andZ", respectively, fok: = 0;. The procedure
then continues as an unconstrained system, making use of equations (14), (15), (19), (24), (26), and (27).

Once the base body is reached, the algorithm again works recursively outward, this time performing the recursive
forward substitution. For the situation where the bddpeing considered lies inboard of body, the recursive
relations are effectively those given by equations (26) and (27)

w, = M (25" ["E -2 (sh) AT, (67)
and
A" = (T AT L ph, (68)
where
A’ =o. (69)

For the situations where the bodylies between bodie®; andp; within a closed loop (i.e. 0; < k < p; ), these
forward substitution relations are modified to
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k;Oi —

i = 0 ()" ("2 - [ A0+ e 1), (70)

s

and

O:k _ (§k)T0jZlPT[k] + B?@Qk (71)

The resulting Recursive Coordinate Reduction (RCR) procedure is fundamentally the same as the two kinematic
formulations appearing in Stajskal and &k [Stajskal and Vakek, 1996]. However it has been formulated inde-
pendently within the frame work of Kane’s Equations and Andersoris) algorithm. And, as will be demonstrated,
it is more general.

4 Results

In this section, the equations of section 3 which describe a method for fully recursive coordinate reduction (RCR) is
demonstrated with a simple planar four-bar mechanism, a planar multi-loop redundant parallel five-bar mechanism,
as well as three variations of a heavily constrained spatial ladder mechanism. The RCR is shown to exhibit both
the expected solution for such mechanisms as well as superior constraint stability relative to the “Traditiofial
constraint technique.

4.1 Constraint Stability Comparison

Both the traditionalO(n) constraint formulation and the new method of recursive coordinate reduction have been
used to simulate a four-bar linkage. The result is the expected overlapping coordinate trajectories of figure 5, which
were obtained using a fourth order fixed st@@{ seconds, no error check) Runge-Kutta integrator. However the
displacement error associated with the acceleration level constraint (AC) enforcement of the more tradtional
approach (if no additional form of constraint stabilization is used), is very different than that of the velocity level
constraint (VC) enforcement which is inherent in the presented RCR formulation, as shown in figure 6. One notes that
both systems are started with identical initial conditions (displacement and velocity) which are accurate to nine decimal
places, and the RCR method, which enforces the constraints to machine accuracy at the velocity level demonstrates
the expected result of a constant rate of drift in displacement at the ninth decimal place. By comparison, the traditional
approach, which enforces the constraints only that the acceleration level, drifts with an expected logarithmic trend
(~quadratic in time), as was previously demonstrated by Park and Chiou [Park and Chiou, 1988].

The inclusion of superior constraint stability at no additional cost to the method is a significant improvement in
itself.

4.2 Parallel Manipulators

Although formulated for single independent (uncoupled) loops, the equations of section 3 can be applied exactly as
written to all forms of parallel manipulators. Parallel manipulators are structures which may be decomposed into
several linkages (legs) extending from a common base and terminating at a common end-effector.

Examples of the resulting topology of arbitrary parallel manipulators are shown in figure 7. These examples illus-
trate that the independent coordinates can all be assigned consecutively because all legs meet at the single end-effector
which is initially located through the traversal of a series of independent coordinates. Any remaining independent
degrees of freedom are then selected as the coordinates adjacent to the end effector, and the effects of the dependent
coordinates are placed on the loops’ local virtual terminal badies

The planar redundant parallel five-bar manipulator of figure 7 has been implemented with the Recursive Coordinate
Reduction method. Figure 8 shows the trajectories of the independent coordinates compared with the results of an
independent multibody package (AUTOLEV).

At this time it is important to separate the RCR method from @he:) formulation of Saha and Schiehlen
[Saha and Schiehlen, 2001] which applies strictly to nonredundant patadigé) manipulators. Saha and Schiehlen’s
formulation requires that a single independent coordinate be placed in each leg, thus the broader class of redundant
and under-actuated parallel manipulators mentioned here are outside of the scope of the work. However, the extension
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Figure 9: Schematic of Heavily Constrained System

to such systemsiaybe possible, but the resulting formulation would be as fundamentally different in structure as the
selection of independent coordinates.

4.3 Other Heavily Constrained Systems

Application of recursive coordinate reduction to heavily constrained systems is demonstrated through simulation of
thespatial laddersystems shown in figure (9). In these systems, the bodies are connected to ground by two degree of
freedom Hooke’s joints and interconnected in a ladder type formation by single degree of freedom revolute joints. An
arbitrary example of such a system consisting @oupled closed loops will involvey = 2L + 1 bodies;L phantom
bodies:n = 2N = 4L +2 generalized coordinates; = 4L algebraic constraints; yet only ha¥elegrees of freedom.

This system represents a situation where previously developed dynamic simulation and analysis algorithms are likely
to pay a high computational price both for the number of generalized coordinades the number of algebraic
constraintsn.

Direct application of the previous equations to the ladder systems will actually result in a quadratic growth in the
number of computations. This is due to the fact that each phantom bodig¥ Kinematic loop quantities must be
related and computed back to bogly which requires a linearly increasing effort for each additional cell (or ladder
rung).

To avoid quadratic growth and maintain a linear formulation we note that for loops sharing a common base body
(e.9.0; = 0y), the following relationships hold at the connection to the first body in a new cell:

ng]‘ _ 5k OAPr{ il + X Anj (72)
gks St 4 Ay (73)
and,
VS e S (74)
So we may write
AT = o (o A BN AR (75)
or
I L L A (76)
L8 A - eb g XM Al )
and for a general body; we have
ngj _ Fk OAp] + @k] += =k; A”J (78)
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where the definition of is unchanged and follows its original recursion of (53) but is exactlyon the first body in
a new cell.

The © term is a known constant which may be propagated forward throughout the coupled closed loops. On the
base bod¥": = 0 and the recursion is given by

@k,; _ ék:i @P’r’[ki]’ (79)

except for anyfirst body which begins a new logpwhich is instead given by,

0

OFi = gk (@Flkil 4 gPrikil Dyniy, (80)

The additionaP term required for tru€®(n + m) performance becomes part of the known and applied force term

YE" in exactly the same manner as " terms.

Through appropriate selection of inertia properties, all ladder systems given by figure 9 can be made to exhibit
the same independent coordinate trajectore®hdqg.). Figure 10 shows the independent coordinate trajectories of
several such mechanisms (a cell being an independent closed loop) using recursive coordinate reduction (RCR) as well
as the solution of an equivalent two degree of freedom spatial pendulum obtained with AUTOLEV.

0.3 T T T T T T T T
— q1 single cell
g1 double cell
— - g1 triple cell
O gl AUTOLEV ||
— @2 single cell
g2 double cell
— — g2 triple cell
* 2 AUTOLEV

0.2

0.1

angle (radians)

-0.3

0.4 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (seconds)
Figure 10: Independent Coordinate Trajectories of Various Ladder Mechanisms

Figure 11 indicates the performance characteristics for analysis of such a heavily constrained pripbfehes:
system constraints are not consideridThe system constraints are considered, but the traditioa) constraint
approach is used; Andlj) the Recursive Coordinate Reduction algorithm presented here is used. Figure 11 indicates
that in situations, such as this, where the number of constrainssof the same order as the number of generalized
coordinates:, then even these so-called “Ordeéralgorithms actually offelO(n3) performance, and generally may
not perform even as well as well writtéi(n?)-based algorithms. However, the presented recursive coordinate reduc-
tion algorithm does not pay such a price, being linear in both the number of generalized coordmatehie number
of algebraic constraints (e.9.0(n + m)).
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5 Forward Problem Computational Cost vs. Problem Size
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Figure 11: Computational Cost Required for Forward Problem Simulation of this Spatial Ladder System

4.4 Restrictions

Application of the method of recursive coordinate reduction has been shown to produce valid results for a significant
class of problems. However, no discussion is included for systems of coupled loops which do not share a common
base body.

The careful observer will also note that multibody systems can be constructed such thatthe-firstjoint coor-
dinates in a given loop do not constitute a valid selection of independent coordinates. Moreover, some systems posses
singular configurations, with respect to specific independent coordinate selectionsiabawtich a previously valid
coordinate selection is invalid or ill conditioned.

These issues are to be addressed in a forthcoming publication.

5 Conclusions

A new method for fully recursive treatment of constraints has been presented in the form of the Recursive Coordinate
Reduction algorithm. Relative to the comman) constraint method the RCR algorithm exhibits both superior
numerical stability of the constraint relations (with respect to temporal integration), and a significant reduction in
computational order fron®(n + mn + m?n + m?) to O(n + m). The method has demonstrated applicability to

a large family of closed loop multibody systems, and the extension to the complete set is the topic of a forthcoming
publication.
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